PPPL Flash Talk Matt Ketkaroonkul

A little about me

- UofWA alum
- SULI/PFURO alum
- Going to UCLA
- Outreach w/ Computational Research Access NEtwork (CRANE)
 - Teaching computational plasma physics to underrepresented students
 - We have collab'ed with the PPPL!
- I like to read, hike, crochet, video games

Research Interests & Experience

- Remote work w/ Prof. Adelle
 Wright's group @ UW Madison
- MHD Theory and Simulation

Research, continued

- Localized currents evolution
 - In response to magnetic field 0 perturbations
 - Alfvén, resistive timescales \bigcirc
 - Magnetic island structures Ο
 - **Reconnection events** \bigcirc
- Investigating non-linear, higher order solutions of magnetic field
 - Inspired by the work of Prof. Dewar [a] 0
- Hope to learn more about math behind stellarators this week!

1.0

0.5

0.0

-0.5

-1.0

-1.5

Ongoing Design of Doppler Reflectometry for use on the Helically Symmetric eXperiment (HSX)

Michael Richardson¹, Xiang Han¹, K.M. Likin¹, H. O. M. Hillebrecht¹, T. Gallenberger¹, C. Seyfert¹, N. Maruschenko², P. Aleynikov², B. Geiger¹, B. Knowles¹, R. Wagner¹ and the HSX team

¹HSX Plasma Lab, University of Wisconsin-Madison ²Max-Planck Institute for Plasma Physics – Greifswald

This work was funded by the Department of Energy (DoE) under grant number DE-FG02-93ER54222

Outline

- Doppler Reflectometry, the Helically Symmetric eXperiment, and you
- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

Outline

• Doppler Reflectometry, the Helically Symmetric eXperiment, and you

- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

HSX Important Parameters

• HSX:

- Major radius: 1.2 m
- Minor radius: 0.12 m
- Shot time: 50 ms
- Peak densities $\sim 0.8 \ e19 \ m^{-3}$ (1 T)
- B on axis = 1 T
 - Can operate at 0.5 T
 - Upgrade to achieve 1.25 T in progress
- Fluctuation measurements are of interest in HSX
 - Compare to CHERS measurements of velocities in HSX

A. Briesemeister Plasma Phys. Control. Fusion (2013)

Doppler Reflectometry, Why and How?

- Technique for approaching density fluctuation analysis.
- A microwave is tilted (poloidally) w.r.t. the incident plasma surface
 - (oriented either with E || B for O-mode, or E ⊥ B for X-mode)
- Uses the Bragg condition at -1st order to obtain fluctuation wavenumber
 - $-k = 2k_0 \sin(\theta_t)$
- Doppler shift in beam can be used to estimate rotation velocity \vec{u}
 - $-\omega_D = \vec{u} \cdot \vec{k} \approx u_\perp k_\perp$

Current HSX Reflectometry System

- Current Setup has been described in detail in the previous talk
- Key parameters to keep in mind
 - Monostatic antenna
 - Operable in either O or X-mode orientation
 - Requires machine up-to-air to rotate antenna system
 - Switch-controlled VCO sources
 operable between 14.5 25.5 GHz
 - Digitizer with **8 Msa/s** digitization
 - Installed in HSX box port A alongside Interferometry diagnostic

Outline

- Doppler Reflectometry, the Helically Symmetric eXperiment, and you
- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

System Requirements

- Tilting of mirror requires control of the structure within vacuum
- As little impact on beam pattern as possible
- Access to the system is currently limited by space within the boxport
 - Reflectometry shares a boxport with Interferometry...
 - Current motor designs share flange with antenna/mirror support structure

System Design Goals

- Tilt Resolution
 - Want to rotate up to 15 degrees with good precision for k_{\perp}
- Controllability between shots
 - Remote motor control preferable
 - 8 minute inter-shot time
- Flexibility between O and X mode
 - Allows for ability to measure density range expected in 0.5, 1, and 1.25 T regimes
 - Currently, X-mode scans 0.5 T plasma better, O-mode scans 1 T better
 - While not yet implemented, 1.25 T is predicted to increase density by a factor of \sim 3x
- Ability to continue operation as profile/stepped frequency device when needed

Estimated Parameter Range (k_{\perp})

- Initial k-range estimated for 15 degree rotation
 - Ray-Tracing will provide more accurate incidence angle ranges (ongoing)

M. Richardson et al. – Design of Doppler Reflectometry at HSX

Outline

- Doppler Reflectometry, the Helically Symmetric eXperiment, and you
- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

Rotatable Mirror Design

- Uses linear feedthrough to control mirror position with motor to 1 μm precision (1)
 - Corresponds to 0.001 Degree precision
 - Neutral 45° position of mirror can be one extreme of the stepper for ease of standard profile or stepped-frequency operation
 - With a modest 25 mm stroke feedthrough,
 19 degrees of tilt can be achieved.
 - Calibration curve estimated from geometry of actuation setup
 - In-lab calibration necessary before installation

Kurt J. Lesker, Linear Bellows Drive, 25 mm stroke

Rotatable Mirror Design

- Current Design removes cylindrical support structure
 - Mirror is supported by a new antenna block, and tilted by a torsion spring at the pivot
- Currently shown in X-mode orientation, supports for Omode operation are feasible, retaining the flexibility of the original device.

Outline

- Doppler Reflectometry, the Helically Symmetric eXperiment, and you
- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

- Investigating Bistatic antenna solution for the reflectometer.
 - Two H-plane sectoral antennae placed 30mm apart rather than one horn antenna
 - Should improve the signal-to-noise ratio of the device
 - Initial design (lower right)

Bistatic Antenna Setup (Beam Simulations)

- Investigating Bistatic antenna solution for the reflectometer.
 - Sectoral antenna beam pattern and directivity simulated using openEMS software
 - Antenna width at mouth slightly reduced (85 mm -> 80 mm)
 - 3dB Beamwidth estimated not to change significantly because of this

Bistatic Antenna Setup (Beam Simulations)

- Investigating Bistatic antenna solution for the reflectometer.
 - Sectoral antenna beam pattern and directivity simulated using openEMS software
 Electrical Far Field [V/m] at f = 20 GHz

Frequency Sources, Frequency Doubling

- Current setup employs two VCOs that can scan between 13-25.5 GHz (Waveguide cutoff limits operation below 14.5 GHz)
- Two current avenues for upgraded operation
 - Invest in new low-noise Frequency source capable of 10MHz – 25 GHz operation (such as a SynthHD Pro signal generator)
 - A Frequency doubler to allow for higher frequency band operation in upgraded 1.25 T plasmas
 - Accessible range -> 14.5 ~ 50 GHz
 - Improved density range:
 - $n_{\rm e} < 2.5 \times 10^{19} \, m^{-3}$ (X-mode)
 - $2.7 \times 10^{18} < n_e < 3.1 \times 10^{19} \ m^{-3}$ (O-mode)

M. Richardson et al. – Design of Doppler Reflectometry at HSX

Microwave setup

- SSB upconverter output previously added noise before mixing with returning signal, reducing the achievable SNR
- Reroutes waveguide-delayed signal directly to RF mixer
- Addition of frequency doubler may require new mixer in the future

Outline

- Doppler Reflectometry, the Helically Symmetric eXperiment, and you
- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

Summary & Conclusions

- Design of a Doppler Reflectometer is underway for installation on HSX
- A Rotatable Mirror is being designed for control and access within a single flange
 - The new design will preserve the flexibility of the previous system while giving access to new regimes of measurements
- Initial estimates of key parameters have been made
 - Modelling in the near future will lend specificity to parameter space
- Upgrades to the antenna and microwave system are also in consideration
- We are happy to hear feedback and advice on how to best continue and execute this project!

David Martinez-del-Rio Converse KAM

University of Warwick

Mathematics Institute

Robert MacKay

Nikos Kallinikos

・ 同 ト ・ ヨ ト ・ ヨ ト

KAM Theory

Goal: Provide sufficient conditions for the existence of invariant tori of given class in Hamiltonian systems.

David-Martinez-del-Rio@warwick.ac.uk

Converse KAM

Goal: determine regions through which no invariant tori of given class pass.

- Herman (1983).
- Mather (1984).
- MacKay & Percival (1985).
- MacKay, Meiss, Stark (1989).
- MacKay (1989).
- White (2012).
- MacKay (2018).
- Duignan, Meiss (2021).
- Kallinikos, MacKay, Syndercombe (2022).
- Kallinikos, MacKay, DM (2023).

Converse KAM formulations

Direct formulation^[1]

Conefield formulation^[2]

N Kallinikos, RS MacKay, DM 2023 PPCF 65 095021.
 RS MacKay, DM In preparation.

David-Martinez-del-Rio@warwick.ac.uk

Converse KAM results

E

Converse KAM results

David-Martinez-del-Rio@warwick.ac.uk

E

Goal: Apply Weighted Birkhoff Averaging (WBA) to gauge energetic particles interaction with electromagnetic perturbations.

Motivation:

- In the case of multiple Alfven waves or perturbation to QS, Poincare maps are higher dimensional and are difficult to interpret.
- Looking for alternatives to Poincare plots
 - The accuracy of & relative time to WBA convergence distinguishes between integrable and chaotic flows.

Conditions we are evaluating:

- Varying strength of field
- Varying initial conditions of a passing EP (s, chi coordinates) for overlapping islands Looking for distinctions in periodic, quasi-periodic, and chaotic behavior

Lachmann / GSS Flash Talk / 2024.3

 $WBA(p_{\zeta}) = \frac{1}{T} \int_{0}^{T} Ce^{-\frac{1}{\frac{t}{T}(1-\frac{t}{T})}} p_{\zeta}(t) dt$ Evaluated guiding center motion in simple magnetic field with a varying perturbation: $B = B_0(1 + \bar{\eta}r\cos(\theta - N\zeta))$ $+B_{0z}\cos\left(m\theta-Nn\zeta\right)$ Calculated the WBA of EP momentum across many convergence times, and calculate the digit accuracy digit accuracy_T(p) = $-\log_{10} \frac{\left|WBA(p)\left(t_{T/2}\right) - WBA(p)\left(t_{T}\right)\right|}{\frac{1}{2}\left|WBA(p)\left(t_{T/2}\right)\right| + \left|WBA(p)\left(t_{T}\right)\right|}$

as a measure of integrability.

[1] Duignan, Meiss. Distinguishing between regular..., *Physica D: Nonlinear Phenomena*. 2023

[1]

Introduction.

Introduction.

. Research assistant.

Cornell University.

. PhD/Postdoc.

. Undergrad.

0

. Research Scientist.

. Jicamarca Radio Observatory has a very large radar that can detect electron fluctuations in space.

. We have a model for those fluctuations, so we can estimate the local state of the plasma by fitting parameters **but starts failing as we get close to perpendicular to B.**

. We can simulate the correct statistics but its very computationally intensive. Instead, we are **building a surrogate model.**

lonospheric refraction tomography.

. Measure ray variables at receiver and try to fit ionospheric parameters.

Measuring current sheets in space.

. Low-cost magnetometers make possible to think about larger networks, but what is the optimal sensor configuration?

Thanks!

Global Stellarator Optimization Mason Haberle

- 4th year PhD student at NYU
- Background in theoretical fluids, turbulence theory, and convex integration
- Working on global stage 1 stellarator optimization
 - Using global methods to find new minima: pdfo, turbo
 - Combining local and global methods
 - Future: optimizing for nonlinear quantities like plasma turbulence

 $[\]log(\text{wave number}, k)$