

PPPL Flash Talk Matt Ketkaroonkul

A little about me

- UofWA alum
- SULI/PFURO alum
- **•** Going to UCLA
- Outreach w/ Computational Research Access NEtwork (CRANE)
	- Teaching computational plasma physics to underrepresented students
	- We have collab'ed with the PPPL!
- I like to read, hike, crochet, video games

Research Interests & Experience

- Remote work w/ Prof. Adelle Wright's group @ UW Madison
- MHD Theory and Simulation

Research, continued

- Localized currents evolution
	- In response to magnetic field perturbations
	- Alfvén, resistive timescales
	- Magnetic island structures
	- Reconnection events
- Investigating non-linear, higher order solutions of magnetic field
	- Inspired by the work of Prof. Dewar [a]
- Hope to learn more about math behind stellarators this week!

 $1.0 -$

 1.0

 0.5

 0.0

 -0.5

 -1.0

 -1.5

Current Density, $\alpha = 0.05$

 0.6

 -0.3

 $+0.0$

 \Box = 0.3

 -1.395

 -1.275

 -1.155

 -1.035

0.915

0.795

0.675

 -0.555

 -0.435

0.315

 $1.5\,$

 $1.0 \cdot$

 0.5

 0.0

 -0.5

 -1.0

Pressure Field p, $\alpha = 0.01$

 $^{-2}$

Ongoing Design of Doppler Reflectometry for use on the Helically Symmetric eXperiment (HSX)

Michael Richardson¹, Xiang Han¹, K.M. Likin¹, H. O. M. Hillebrecht¹, T. Gallenberger¹, C. Seyfert¹, N. Maruschenko², P. Aleynikov², B. Geiger¹, B. Knowles¹, R. Wagner¹ and the HSX team

1HSX Plasma Lab, University of Wisconsin-Madison 2Max-Planck Institute for Plasma Physics – Greifswald

This work was funded by the Department of Energy (DoE) under grant number DE-FG02-93ER54222

Outline

- Doppler Reflectometry, the **H**elically **S**ymmetric e**X**periment, and you
- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

Outline

• **Doppler Reflectometry, the Helically Symmetric eXperiment, and you**

- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

HSX Important Parameters

• HSX:

- ̶ Major radius: 1.2 m
- ̶ Minor radius: 0.12 m
- ̶ Shot time: 50 ms
- − Peak densities \sim 0.8 e 19 m^{-3} (1 T)
- $-$ B on axis = 1 T
	- Can operate at 0.5 T
	- Upgrade to achieve 1.25 T in progress
- ̶ Fluctuation measurements are of interest in HSX
	- Compare to CHERS measurements of velocities in HSX

May 13th 2024 **M. Richardson et al. – Design of Doppler Reflectometry at HSX** 4/21

Doppler Reflectometry, Why and How?

- Technique for approaching density fluctuation analysis.
- A microwave is tilted (poloidally) w.r.t. the incident plasma surface
	- ̶ (oriented either with E || B for O-mode, or E ⊥ B for X-mode)
- Uses the Bragg condition at -1 st order to obtain fluctuation wavenumber
	- $k = 2k_0 \sin(\theta_t)$
- Doppler shift in beam can be used to estimate rotation velocity \vec{u}
	- $-\omega_D = \vec{u} \cdot \vec{k} \approx u_1 k_1$

Current HSX Reflectometry System

- Current Setup has been described in detail in the previous talk
- Key parameters to keep in mind
	- ̶ Monostatic antenna
	- ̶ Operable in either O or X-mode orientation
		- Requires machine up-to-air to rotate antenna system
	- ̶ Switch-controlled VCO sources operable between **14.5 – 25.5 GHz**
	- ̶ Digitizer with **8 Msa/s** digitization
	- ̶ Installed in HSX box port A alongside Interferometry diagnostic

Outline

- Doppler Reflectometry, the **H**elically **S**ymmetric e**X**periment, and you
- **Design Constraints to the system**
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

System Requirements

- Tilting of mirror requires control of the structure within vacuum
- As little impact on beam pattern as possible
- Access to the system is currently limited by space within the boxport
	- ̶ Reflectometry shares a boxport with Interferometry…
	- ̶ Current motor designs share flange with antenna/mirror support structure

System Design Goals

- Tilt Resolution
	- Want to rotate up to 15 degrees with good precision for k_+
- Controllability between shots
	- ̶ Remote motor control preferable
	- ̶ 8 minute inter-shot time
- Flexibility between O and X mode
	- ̶ Allows for ability to measure density range expected in 0.5, 1, and 1.25 T regimes
		- Currently, X-mode scans 0.5 T plasma better, O-mode scans 1 T better
		- While not yet implemented, 1.25 T is predicted to increase density by a factor of \sim 3x
- Ability to continue operation as profile/stepped frequency device when needed

Estimated Parameter Range (k_+)

- Initial k-range estimated for 15 degree rotation
	- ̶ Ray-Tracing will provide more accurate incidence angle ranges (ongoing)

May 13th 2024 **M. Richardson et al. – Design of Doppler Reflectometry at HSX** 10/21

Outline

- Doppler Reflectometry, the **H**elically **S**ymmetric e**X**periment, and you
- Design Constraints to the system
- **Rotatable Mirror design**
- Additional Planned Upgrades to the Reflectometry System
- Conclusions

Rotatable Mirror Design

- Uses linear feedthrough to control mirror position with motor to 1 μm precision (1)
	- ̶ Corresponds to 0.001 Degree precision
	- $-$ Neutral 45 \degree position of mirror can be one extreme of the stepper for ease of standard profile or stepped-frequency operation
	- ̶ With a modest 25 mm stroke feedthrough, 19 degrees of tilt can be achieved.
	- ̶ Calibration curve estimated from geometry of actuation setup
		- In-lab calibration necessary before installation

Kurt J. Lesker, Linear Bellows Drive, 25 mm stroke

Rotatable Mirror Design

- Current Design removes cylindrical support structure
	- ̶ Mirror is supported by a new antenna block, and tilted by a torsion spring at the pivot
- Currently shown in X-mode orientation, supports for Omode operation are feasible, retaining the flexibility of the original device.

Outline

- Doppler Reflectometry, the **H**elically **S**ymmetric e**X**periment, and you
- Design Constraints to the system
- Rotatable Mirror design
- **Additional Planned Upgrades to the Reflectometry System**
- Conclusions

- Investigating Bistatic antenna solution for the reflectometer.
	- ̶ Two H-plane sectoral antennae placed 30mm apart rather than one horn antenna
	- ̶ Should improve the signal-to-noise ratio of the device
	- ̶ Initial design (lower right)

Bistatic Antenna Setup (Beam Simulations)

- Investigating Bistatic antenna solution for the reflectometer.
	- ̶ Sectoral antenna beam pattern and directivity simulated using openEMS software
	- ̶ Antenna width at mouth slightly reduced (85 mm -> 80 mm)
		- 3dB Beamwidth estimated not to change significantly because of this

Bistatic Antenna Setup (Beam Simulations)

- Investigating Bistatic antenna solution for the reflectometer.
	- ̶ Sectoral antenna beam pattern and directivity simulated using openEMS software

Frequency Sources, Frequency Doubling

- Current setup employs two VCOs that can scan between 13-25.5 GHz (Waveguide cutoff limits operation below 14.5 GHz)
- Two current avenues for upgraded operation
	- ̶ Invest in new low-noise Frequency source capable of 10MHz – 25 GHz operation (such as a SynthHD Pro signal generator)
	- ̶ A Frequency doubler to allow for higher frequency band operation in upgraded 1.25 T plasmas
		- Accessible range -> $14.5 \approx 50$ GHz
	- ̶ Improved density range:
		- $n_e < 2.5 \times 10^{19} \ m^{-3}$ (X-mode)
		- 2.7 \times 10¹⁸ $< n_e < 3.1 \times 10^{19}$ m^{-3} (O-mode)

May 13th 2024 **M. Richardson et al. – Design of Doppler Reflectometry at HSX** 18/21

1.9

 1.7

1.5

 0.5

 0.3

 0.1 ₁₀

Lower cutoff region

 v_{CO} : 14.5 ~ 25.5 GHz

15

20

25

50

45

Upper cutoff region

40

35

HSX Reflectometry

30

frequency in X-mode (GHz)

 0.0

Microwave setup

- **SSB** upconverter output previously added noise before mixing with returning signal, reducing the achievable SNR
- Reroutes waveguide-delayed signal directly to **RF mixer**
- Addition of frequency doubler may require new mixer in the future

Outline

- Doppler Reflectometry, the **H**elically **S**ymmetric e**X**periment, and you
- Design Constraints to the system
- Rotatable Mirror design
- Additional Planned Upgrades to the Reflectometry System
- **Conclusions**

- Design of a Doppler Reflectometer is underway for installation on HSX
- A Rotatable Mirror is being designed for control and access within a single flange
	- ̶ The new design will preserve the flexibility of the previous system while giving access to new regimes of measurements
- Initial estimates of key parameters have been made
	- ̶ Modelling in the near future will lend specificity to parameter space
- Upgrades to the antenna and microwave system are also in consideration
- We are happy to hear feedback and advice on how to best continue and execute this project! original models and developed the models of the state of t
The state of the sta

David Martinez-del-Rio Converse KAM

University of Warwick

Mathematics Institute

Robert MacKay

Nikos Kallinikos

 Ω

KAM Theory

Goal: Provide sufficient conditions for the existence of invariant tori of given class in Hamiltonian systems.

Goal: determine regions through which no invariant tori of given class pass.

- Herman (1983).
- Mather (1984).
- MacKay & Percival (1985).
- MacKay, Meiss, Stark (1989).
- MacKay (1989).
- White (2012).
- **•** MacKay (2018).
- O Duignan, Meiss (2021).
- · Kallinikos, MacKay, Syndercombe (2022).
- Kallinikos, MacKay, DM (2023).

 \rightarrow \pm

 QQ

Converse KAM formulations

Direct formulation^[1] $\left[$ Conefield formulation^[2]

[1] N Kallinikos, RS MacKay, DM 2023 *PPCF* 65 095021. [2] RS MacKay, DM *In preparation.*

Þ

つへへ

Converse KAM results

K 御 ▶ K 君 ▶ K 君 ▶

Þ

つくへ

 \leftarrow \Box

Converse KAM results

Goal: Apply Weighted Birkhoff Averaging (WBA) to gauge energetic particles interaction with electromagnetic perturbations.

COLUMBIA

Motivation:

- In the case of multiple Alfven waves or perturbation to QS, Poincare maps are higher dimensional and are difficult to interpret.
- Looking for alternatives to Poincare plots
	- \circ The accuracy of $\&$ relative time to WBA convergence distinguishes between integrable and chaotic flows.

Conditions we are evaluating:

- Varying strength of field
- Varying initial conditions of a passing EP (s, chi coordinates) for overlapping islands Looking for distinctions in periodic, quasi-periodic, and chaotic behavior

Lachmann / GSS Flash Talk / 2024.3

 $WBA(p_{\zeta}) = \frac{1}{T} \int_0^T C e^{-\frac{1}{T}(1-\frac{t}{T})} p_{\zeta}(t) dt$ Evaluated guiding center motion in simple magnetic field with a varying perturbation: $B = B_0(1 + \bar{\eta}r\cos(\theta - N\zeta))$ $+ B_{0z} \cos(m\theta - Nn\zeta)$ Calculated the WBA of EP momentum across many convergence times, and calculate the digit accuracy digit $\arccos_{T}(p) \equiv -\log_{10} \frac{[WBA(p)(t_{T/2}) - WBA(p)(t_{T})]}{\frac{1}{2}[WBA(p)(t_{T/2})] + [WBA(p)(t_{T})]}$ as a measure of integrability. $[1]$

[1] Duignan, Meiss. Distinguishing between regular..., *Physica D:* Nonlinear Phenomena, 2023

Introduction.

Introduction.

. Research assistant.

Cornell University.

. PhD/Postdoc.

PONTIFICIA
**UNIVERSIDAD
CATÓLICA**
DEL PERÚ **HUDDDLLI Mind and and and and** \blacksquare

. Undergrad.

. Research Scientist.

Collective Thomson Scattering and Coulomb collisions.

. Jicamarca Radio Observatory has a very large radar that can detect electron fluctuations in space.

. We have a model for those fluctuations, so we can estimate the local state of the plasma by fitting parameters but starts failing as we get close to perpendicular to B.

. We can simulate the correct statistics but its very computationally intensive. Instead, we are building a surrogate model.

Ionospheric refraction tomography.

. Measure ray variables at receiver and try to fit ionospheric parameters.

Measuring current sheets in space.

. Low-cost magnetometers make possible to think about larger networks, but what is the optimal sensor configuration?

Thanks!

Global Stellarator Optimization Mason Haberle

- 4th year PhD student at NYU
- Background in theoretical fluids, turbulence theory, and convex integration
- Working on global stage 1 stellarator optimization
	- Using global methods to find new minima: pdfo, turbo
	- Combining local and global methods
	- Future: optimizing for nonlinear quantities like plasma turbulence

 $log(wave number, k)$