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Fundamental characterization of plasma turbulence in the edge of stellarators
Optimization of heat loads and turbulent flux in stellarators

Work with Prof Paolo Ricci and Dr. Joaquim Loizu, using  the drift-reduced Braginskii equations solved 

by the GBS code*

*M. Giacomin, et al. Journal of Computational 

Physics 463 (2022): 111294



Collaboration with 
LHD, TJK, HSX, 
CSX

Constructing coordiates for 
arbitrarily shaped toroidal domain*

Collaboration with Stuart Hudston 
(PPPL) and Florian Hinderlang (IPP 
-  Garching)

*Z.Tecchiolli et al, arxiv 
https://arxiv.org/abs/2405.08173

CSX TJKLHD



Veronika C Bayer

APEX Collaboration: a brief overview
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APEX Collaboration

A P E X  C O L L A B O R AT I O N :  O V E RV I EW 2

Step 1:
Obtain positrons from

world-class source
(up to 109/s)

Step 2:
Use a series of 

non-neutral plasma 
traps to collect 

positrons, until we 
have enough to 
make a plasma.

Step 3 (version A):
Combine positrons with 
electrons in a levitated 

dipole trap.

Step 3 (version B):
Combine positrons with 

electrons in an optimized 
stellarator.

Step 4: Study the collective, quasineutral behavior of our pair plasmas

Stoneking, et al. (2020) J. Plasma Phys. 86, 155860601

FRM-II

(fission reactor 

neutron source)

M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  V E R O N I K A C  B AY E R |  0 8 . 2 0 2 4

https://doi.org/10.1017/S0022377820001385


APEX-LD
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APEX-LD

A P E X  C O L L A B O R AT I O N :  O V E RV I EWM A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  V E R O N I K A C  B AY E R |  0 8 . 2 0 2 4 4

PhD Goals: 

a) Understand and generate e- plasma in APEX-LD 

b) Use E x B drift to inject positron pulses into an e-

plasma 

c) Diagnose e-e+ plasmas in various traps



Thanks for listening

A P E X  C O L L A B O R AT I O N :  O V E RV I EWM A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  V E R O N I K A C  B AY E R  |  0 8 . 2 0 2 4 5



EPOS
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My Self-Introduction and Recent Work

HengQian Liu

Princeton Plasma Physics Laboratory / Simons Foundation Graduate Summer School

2024.08.01

珩骞 刘



About Me
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First-year graduate student

Ø My name
 HengQian Liu （珩骞 刘）

Ø From School 
University of Science and Technology of China， USTC

Ø Study in 
 Nuclear Science and Technology

Ø Undergraduate ：Fission Engineering
Ø Graduate    ：Plasma Physics & Fusion Engineering

Ø Now major in ：Stellarator Optimize
Ø Learned STELLOPT\SIMSOPT\DESC\SPEC\SIMPLE\SFINCS\FOCUS\REGCOIL….

Ø My Advisor is 
 Prof. CaoXiang Zhu



Keen on nuclear science
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Not only studying but also popularizing



Main Focus
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Omnigenity Optimize
ØOmnigenity geometric feature[Cary and Shasharina PRL 1996]

u  The contours of the magnetic field B are closed toroidally, poloidally of both.
uThe contours of Maximum-B are straight.
u𝜕Δ!/𝜕α = 0 and 𝜕Δ"/𝜕α = 0: the separations in ζ and θ between the pair of points on opposite branches 

of a field line but at the same B
u In a magnet line coordinate system, the magnetic field distribution is independent of the magnet line labels

B closed toroidally, 
poloidally or both

Maximum-B 
straight

𝛛𝜟𝜽/𝝏𝜶 = 𝟎  
𝛛𝜟𝜻/𝝏𝜶 = 𝟎

Magnetic field distribution 
independent of magnet line label
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ØConstruct a magnetic field distribution along the magnetic field lines with the same maximum and 
minimum values[Cary and Shasharina PRL1996]

𝑩 = 𝑩𝟎(𝟏 + 𝝐𝒓𝒄𝒐𝒔 𝜼 )
ØConstructing Omnigenous fuction i.e. satisfying the target coordinate transformation 𝜼, 𝜶 ↔ 𝜻𝑩, 𝜽𝑩

Safety factor 𝒒𝒉:

𝑞& = 𝑁𝑞 − 1

Rotational 
transformation𝛊𝐡:

𝜄& =
𝜄

𝑁 − 𝜄

𝒈 𝜽, 𝜼 = 𝟎	𝒘𝒉𝒆𝒏	𝜼 𝜻 = 𝟎, 𝟐𝝅

𝜻 = 𝟐𝝅 − 𝜼 + 𝒈 𝜽 −
𝚫𝜻 𝜼
𝒒𝒉

, 𝟐𝝅 − 𝜼 + 𝚫𝜻 𝜼 	 𝒇𝒐𝒓	 𝜼 > 𝝅	

𝜻 = 𝜼 + 𝒈 𝜽, 𝜼 𝒇𝒐𝒓 𝟎 ≤ 𝜼 ≤ 𝝅

Main Focus
Omnigenity Optimize
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Main Focus
Omnigenity Optimize
ØC-S Mapping’s Coordinate transformation 𝜂, 𝛼 ↔ 𝜁8 , 𝜃8   not correlate MN
ØLandreman Mapping has the form[Landreman POP 2012]

• Dudt	Mapping	without	Radial	Interpolation[Dudt arxiv 2023]

• 𝐹 characterized as the Fourier coefficient

𝐹" 𝑦 = $cos 𝑘 𝑦 	for	𝑘 ≥ 0
sin 𝑘 𝑦 	for	𝑘 < 0

ØUpper wavy line shows that :𝜁, ;𝜃, ̃𝜄 is in computational space，especially :𝜁, ;𝜃 both in range 
0,2𝜋 ，respect to real space as 
l 𝑀,𝑁 = 1,0   i.e. Toroidal Omnigenity： 0𝜃 = 𝑁$𝜁, 3𝜁 = 𝜃, ̃𝜄 = 𝑁$/𝜄

l 𝑀,𝑁 = 𝑀,N = 	𝑛𝑜𝑛	 𝑧𝑒𝑟𝑜  i.e. Helicity Omnigenity、Poloidal Omnigenity：
0𝜃 = 𝜃, 3𝜁 = 𝑁𝜁 −𝑀𝜃 𝑁$, ̃𝜄 = 𝜄/ 𝑁 − 𝜄𝑀 𝑁$

9𝜻 𝜼, :𝜽 = ;
𝝅 − 𝒔 𝜼, :𝜽 + 𝜾̃𝑫 𝜼 − 𝑫 𝜼 	if	𝟎 ≤ 𝜼 ≤ 𝝅

𝝅 + 𝒔 𝟐𝝅 − 𝜼,−:𝜽 + 𝜾̃𝑫 𝟐𝝅 − 𝜼 + 𝑫 𝟐𝝅 − 𝜼 	if	𝝅 < 𝜼 ≤ 𝟐𝝅

𝒉 = 𝟐𝜼 + 𝝅 + '
𝒎"𝟎

𝑴𝜼

'
𝒏"&𝑵𝜶

𝑵𝜶

𝒙𝒎𝒏 𝑭𝒎 𝜼 𝑭𝒏𝑵𝑭𝑷 𝜶



Main Focus
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Omnigenity Optimize

ØLandreman Mapping has the form

9𝜻 𝜼, <𝜽 = >
𝝅 − 𝒔 𝜼, <𝜽 + 𝜾̃𝑫 𝜼 − 𝑫 𝜼 	if	𝟎 ≤ 𝜼 ≤ 𝝅

𝝅 + 𝒔 𝟐𝝅 − 𝜼,−<𝜽 + 𝜾̃𝑫 𝟐𝝅 − 𝜼 + 𝑫 𝟐𝝅 − 𝜼 	if	𝝅 < 𝜼 ≤ 𝟐𝝅

（Hidden Batman）



Omnigenity Example
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Poloidal Omnigenity
Nfp = 2 Iota = 0.4 A=6 NO WARMSTART NO alpha particle loss when s=0.25 t=0.2s   Landreman-like Mapping

Nfp = 3 Iota = -0.8 A=8 NO WARMSTART NO alpha particle loss when s=0.25 t=0.2s   Landreman-like Mapping



Omnigenity Example
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Poloidal Omnigenity
Nfp = 2 Iota = -0.4 A=6 NO WARMSTART With WELL Landreman-like Mapping

SQUID-like but lack of
turbulence optimization

SQUID-like but lack of
turbulence optimization

Nfp = 3 Iota = -0.72 A=6 NO WARMSTART With WELL Landreman-like Mapping

[Goodman  2024]



Omnigenity Example
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Toroidal Omnigenity And Helical Omnigenity
TO Nfp = 2 Iota = 0.83-0.75  A=6 with WARMSTART

HO Nfp = 4 Iota = -1.23—1.34  A=8 with WARMSTART



感谢您的关注！
Thank you for your attention!



The Magnetic Gradient Scale Length Explains Why 
Certain Plasmas Require Close External Magnetic Coils

By John Kappel, Matt Landreman, and Dhairya Malholtra
In Pre-print: arxiv.org/abs/2309.11342 (2023)

This work was supported by the U.S. Department of Energy, Office of Science, Office of Fusion 
Energy Science, under award number DE-FG02-93ER54197. This research used resources of 
the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of 
Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, 
operated under Contract No. DE-AC02-05CH11231 using NERSC award 
FES-ERCAP-mp217-2023.

Plasma 
Current

External 
Current

Stellarators Need Space for a Breeding Blanket & Neutron 
Shielding

During the design of ARIES-CS and W7-X, both 
configurations experienced engineering issues 
related to the space between the last closed flux 
surface and the external coils.[1][2] 

This “plasma-coil separation” must be > 1.5m to 
have enough room for neutron shielding and a 
blanket.

Larger plasma-coil separation reduces coil ripple, 
accommodates for shifts during startup and 
initialization, and can allow larger configurations to 
be scaled down.

REGCOIL[4] is a Useful Optimizer to Systematically 
Compare the Coils of Many Configurations

LLCFS

Winding 
Surface

n

Difficulty of Increasing Plasma-Coil Separation in Stage 
II Optimization

      Pick 
Two

Plasma-Coil 
Separation

Simple 
Coils

Accurate 
LCFS 

Boundary

Moving coils further away from the 
plasma results in increased coil 
complexity (such as increased 
curvature, longer coils, and closer 
minimum coil-coil distance), as shown 
on the right.

Single-stage optimization[3] can be 
computationally challenging. It is 
therefore valuable to develop an 
easy-to-calculate proxy for 
plasma-coil separation. 

Intuition for Magnetic Gradient Scale Length

Arguments of scale lengths are used in plasma 
physics to determine which effects are negligible 
versus significant.

A spatial gradient of the magnetic field encodes 
some information about the spatial distance from 
the coils to the plasma.

REGCOIL’s objective function preserves convexity, so any local minimum is a global minimum. It also 
has fewer tuning parameters than other codes.

REGCOIL calculates the surface current density on a winding surface, which is outside the LCFS at a 
constant distance L. This is used to to find the magnetic field of the plasma, as shown below:

2 free parameters: L  and λ. A unique solution 
requires 2 constraints:

  1.  BRMS =  B*
RMS

      2.   ||K||∞= ||K||*∞

||K||∞ or Kmax is the highest current density on 
the winding surface and uniquely defines 
plasma-coil separation.

Model Geometry: Infinite Straight Wire

For a current carrying infinite straight wire,  L
∇B is equal to the 

distance between the magnetic field and the wire. 
Therefore, by measuring the magnetic field and its gradient, we 
can determine where the nearest wire must be located to 
create the magnetic field.

REGCOIL minimizes the following objective:

BRMS is a measure of 
accuracy in the LCFS, 
and changes with λ

Ideally, BRMS = 0, but the 
penalty for complex coils 
prevents this from being 
possible.

Low 
||K||∞

High 
||K||∞ 

Virtual Casing Decomposes Bcoils From Btotal
Summary of REGCOIL Method

25 cm 
Separation

50 cm 
Separation

65 cm 
Separation

We gathered database of > 40 stellarator and tokamak configurations. Within this database, the 
coil-to-plasma distance compared to the minor radius varies by over an order of magnitude. The magnetic 
scale length is well correlated to the coil-to-plasma distance of actual coil designs generated using the 
REGCOIL method.[4] 

Below, we have plotted alternative scale lengths, which are also correlated with the coil-to-plasma distance.

Discussion of Results
To the right is a NFP=4 
QH stellarator on which 
L
∇B is plotted. It is 

shortest on the inside of 
the curve, or the “bean 
cross-section” shown on 
the left.

To the right, alternative scale lengths are 
shown on the surface of the NFP=4 QH 
stellarator. L

∇B matches L||𝜎|| and is 
approximately equal to LMax𝜎.

Results of the main figure are insensitive 
to target ||K||∞ and BRMS within a 
plausible range. Configurations that lie 
off the line of best-fit tend to be 
configurations with high coil-ripple, 
axisymmetric, or their VMEC files do not 
converge.

There is good spatial 
correlation between ||K||∞ and 
L
∇B

*.
The smallest L

∇B and the 
largest ||K||∞ are located in the 
same region.

References
1. F. Najmabadi et al., Fusion Science and Technology 54, 655–672 (2008)
2. T. Klinger et al., Nuclear Fusion 12, 599 (1972).
3. R. Jorge, A. Goodman, M. Landreman, J. Rodrigues, and F. Wechsung, 

PPCF 65, 074003 (2023).
4. M. Landreman, Nuclear Fusion 57, 046003 (2017).
5. D. Malhotra, A. J. Cerfon, M. O’Neil, and E. Toler, PPCF 62, 024004 (2019).
6. D. Malhotra, “Boundary integral equation solver for taylor states”, 

github.com/hiddenSymmetries/virtual-casing (2019).

Our future work is to 
implement L

∇B
* in the 

objective functions of Stage I 
optimizations (i.e., optimizing 
the plasma shape without 
explicitly considering the coil 
shapes).

Parameters

B*
RMS

 = 0.01 T

Using virtual casing, it is possible 
to find the magnetic field 
generated by only the external 
coils, as shown below. We utilized 
work by Dhairya Malhotra[5][6] to 
perform virtual casing when 𝛽 > 0.

Goodman 
QI NFP 1

Jorge QI 
NFP 1

Goodman 
QI NFP 2

Landreman 
Precise QA

HSX - No 
Ripple

HSX- With Ripple

Landreman 
Precise QH

CTH - High  𝜾

W7X - With 
Ripple

ESTELL

ITER

CTH - Low  𝜾W7X - No 
Ripple

NCSX

ARIES-CS

TJ-II

CNT
Wistell-B

|K||*∞ = 17.16 MA/m

a = 1.704 m

BVol = 5.865 T

mpol & ntor = 20

m𝜃 & n𝜁 = 96

Read Paper Here:Cross-section of the ARIES-CS Reactor Design



MONKES: a fast neoclassical code for the evaluation of
monoenergetic transport coefficients in stellarator plasmas

F. J. Escoto1, J. L. Velasco1, I. Calvo1, M. Landreman2 and F. I. Parra3
1Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain 2University of Maryland, College Park, MD, USA 3Princeton Plasma Physics Laboratory, Princeton, NJ, USA

Corresponding author: fjavier.escoto@ciemat.es

1. Neoclassical transport in stellarator optimization

� Stellarators can and must be neoclassically optimized in order to be fusion reactor can-
didates. Wendelstein 7-X has demonstrated that theoretically based optimization is
effective [1].

� Radial transport has been addressed extensively in stellarator optimization. However,
direct optimization of the bootstrap current has not been tackled so far.

� Why has it been excluded? An accurate calculation of the bootstrap current was
too expensive to be included in optimization suites (except for configurations very close
to quasi-symmetry [2]).
The new neoclassical code MONKES (MONoenergetic Kinetic Equation Solver) [3] can
provide a fast and accurate evaluation of all the monoenergetic coefficients in
stellarators.

2. Drift-kinetic equation (DKE) and transport coefficients

MONKES solves the same drift-kinetic equation as the code DKES [4]

ξb · ∇fj + 1
2
∇ · b(1 − ξ2)∂fj

∂ξ
− Êψ

〈B2〉
B × ∇ψ · ∇fj − ν̂

2
∂

∂ξ

(
(1 − ξ2)∂fj

∂ξ

)
= sj,

where j ∈ {1, 2, 3}, ξ := v · b/v, ν̂ := ν(v)/v, Êψ := Eψ/v and
s1 := −Ωavma · ∇ψ/Bv2, s2 := s1, s3 := ξB/B0.

With each solution, MONKES computes the monoenergetic geometric coefficients

D̂ij :=
〈∫ +1

−1
sifj dξ

〉
, i, j ∈ {1, 2, 3}.

For fixed (ν̂, Êψ) the coefficients D̂ij depend only on the magnetic geometry. At
most, only {D̂11, D̂13, D̂31, D̂33} are independent. Stellarator symmetry implies
D̂13 = −D̂31.

Monoenergetic coefficients allow to calculate
neoclassical transport of species a as

〈Γa · ∇ψ〉
〈Qa · ∇ψ〉/Ta
na〈V a · B〉/B0

 =


L11a L12a L13a
L21a L22a L23a
L31a L32a L33a



A1a
A2a
A3a

,
provided the thermodynamical forces

A1a(ψ) := n′
a/na − 3T ′

a/2Ta − eaEψ/Ta,

A2a(ψ) := T ′
a/Ta

A3a(ψ) := eaB0〈E · B〉/Ta
〈
B2
〉
.

The thermal transport coefficients Lij
can be obtained as integrals of the
corresponding D̂ij

Lija :=
∫ ∞

0
2πv2fMawiwjCijaD̂ij dv ,

where w1 = w3 = 1, w2 = v2/v2
ta and.

For each species: Cija := −B2v3/Ω2
a,

Ci3a := −Bv2/Ωa, C3ja := Bv2/Ωa

for i, j ∈ {1, 2} and C33a := v.

3. Legendre expansion

The solution is represented as a truncated
Legendre series

f =
Nξ∑
k=0

f (k)Pk(ξ).

In this basis the DKE has a tridiagonal
structure

Lkf
(k−1) +Dkf

(k) + Ukf
(k+1) = s(k),

for k = 0, 1, . . . Nξ, where f (−1) := 0.

The lower, diagonal and upper terms
are spatial differential operators

Lk = k

2k − 1

(
b · ∇ + k − 1

2
b · ∇ lnB

)
,

Dk = − Êψ

〈B2〉
B × ∇ψ · ∇ + k(k + 1)

2
,

Uk = k + 1
2k + 3

(
b · ∇ − k + 2

2
b · ∇ lnB

)
.

4. Block tridiagonal algorithm

1. Forward elimination
Starting from ∆Nξ

= DNξ
and

σ(Nξ) = s(Nξ) we obtain recursively
∆k = Dk − Uk∆−1

k+1Lk+1,

σ(k) = s(k) − Uk∆−1
k+1σ

(k+1).

for k = Nξ − 1, Nξ − 2, . . . , 0. Each ∆k

and σ(k) are obtained performing
Gaussian elimination over Dk Uk s(k)

Lk+1 ∆k+1 σ
(k+1)


to eliminate Uk.
The system is factorized in a lower
triangular form

Lkf
(k−1) + ∆kf

(k) = σ(k).

2. Backward substitution
Once factorized, the system is easily solved

f (k) = ∆−1
k

(
σ(k) − Lkf

(k−1)
)
,

for k = 0, 1, . . . Nξ.

� Discretizing the flux-surface in Nfs points,
Lk, Dk, Uk and ∆k are approximated by
Nfs ×Nfs matrices.

� MONKES employs Boozer angles (θ, ζ) and a
pseudospectral Fourier discretization with
Nθ and Nζ points (Nfs = NθNζ).

� For calculating D̂ij only {f (k)}2
k=0 are

needed. Memory required is minimal
∼ O(N 2

fs) and typically fits in a single core.
� The solution requires inverting Nξ + 1

matrices of size Nfs ∼ O(N 3
fsNξ) operations.

5. Benchmark of monoenergetic coefficients

Benchmark for three different magnetic configurations and two values of Êψ

corresponding to the 1/ν and
√
ν − ν regimes. All D̂ij are given in metres.
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6. Code performance

Wall-clock timesa of MONKES and
DKES, using a single core, for the same
level of relative convergence.
Case (ν̂ = 10−5 m−1) tDKES

clock tMONKES
clock

W7X-EIM Êψ = 0 90 s 22 s
W7X-EIM Êψ 6= 0 172 s 35 s
W7X-KJM Êψ = 0 698 s 31 s
W7X-KJM Êψ 6= 0 421 s 47 s
CIEMAT-QI Êψ = 0 1060 s 76 s
CIEMAT-QI Êψ 6= 0 4990 s 76 s
aAll wall-clock times shown in what follows correspond

to the cores of CIEMAT’s cluster.

Arithmetical complexity ∼ CalgNξN
3
fs.

Verification with MONKES wall-clock time.
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MONKES is much faster than DKES. Its algorithm scales linearly with Nξ and
cubicly with Nfs. For Nfs ≤ 2000 and Nξ ≤ 200, rapid calculations (≤ 2
minutes) on a single core. Can run even faster using more cores.

7. Exploring piecewise omnigenity

In a piecewise omnigenous magnetic field (pwO) [5], the second adiabatic invariant
J := ∮

v‖ dl is a flux-function only piecewisely.

A simple pwO field can be modelled as
B(θ, ζ) = Bmin + (Bmax −Bmin)

× exp

−
 ζ

wζ

2p

−
(
θ − tζζ

wθ

)2p
,

in the limit p → ∞ along with a constraint to
the rotational transform

ι = −tζ
Nfpwζ

π −Nfpwζ
.

Isolines of B for p = 10

-π
0
π

-π 0 π

θ

ζNfp

wθ = 0.5π
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MONKES has been used to identify regions of the parameter space (p, wθ) of pwO
magnetic fields with small D̂11 and |D̂31|.

Both D̂11 and D̂31 are given in non-dimensional units.
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8. Ongoing work and future plans

� Use MONKES for direct optimization of the bootstrap current in stellarators.
� Include MONKES in predictive transport frameworks.
� Extend MONKES for multispecies momentum-conserving calculations.

[1] C. D. Beidler et al. Nature 596.7871 (2021).
[2] M. Landreman et al. Physics of Plasmas 29.8 (2022).
[3] F. J. Escoto et al. Nuclear Fusion 64.7 (2024).
[4] S. P. Hirshman et al. The Physics of Fluids 29.9 (1986).
[5] J. L. Velasco et al. arXiv:2405.07634. (2024).
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Conclusions 

EM analysis workflow for SPARC tokamak

Bring-up of TF coil voltage tap signal conditioners

Sophia Arnoldᶧ, Adam Kuang, Aria Lorenz, Paul Willis

EM analysis workflow for the SPARC tokamak Toroidal field magnet voltage tap signal conditioner bring-up 

The operation of SPARC requires both rapid, accurate quench prevention technology for preservation of 

the superconducting magnets and high precision measurement devices for determining the performance of 

coils and understanding the real-time environment both within and external to the tokamak. One device 

which will help CFS to reach the required measurement capabilities are voltage tap signal conditioners, which 

clean outputted voltage tap signals. My second project this summer was to perform the bring-up and 

qualification testing of these boards. Reference 

point 

Figure 1. Rendering of SPARC tokamak with 

visual of magnetic field contributions on a position 

outside of system. 
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඲
𝑑Ԧ𝑠 × Ƹ𝑟

𝑟2
The Biot-Savart Law 

Commonwealth Fusion Systems (CFS), a world leader in the fusion energy industry, are set to make history with their proof-of-principle 

SPARC tokamak as the world’s first commercially relevant, Q>1 fusion system.

Purpose 

This package uses the Biot-Savart law to 

calculate the magnetic fields induced by 

SPARC at specified reference points 

outside of the tokamak. To use this law, the 

package estimates each individual path 

integral by utilizing numerical 

integration techniques. 

Figure 4, 5, 6. Output plots from EM analysis package. 

ᶧsarnold@cfs.energy

Purpose 

This EM analysis workflow has already shown its utility for many groups within 

CFS. As this workflow was designed to be user-friendly, it has and will expand the 

number of people who are independently able to calculate the magnetic field 

induced by SPARC. This workflow allows engineers and physicists at CFS alike to 

get a realistic assessment of the magnetic fields surrounding the tokamak, without 

wasting time and computational power running a model that is more detailed than 

necessary for many calculations. 

High-level pipeline diagram

Load 
Magnet 

Geometries
Find T/A

Multiply by 
Coil 

Currents

Figure 2. High-level pipeline diagram for field-solver package. 

Conclusions 

Primary bring-up and qualification testing goals

Figure 7. NX rendering TF coil voltage tap signal conditioner board. 

Intended use includes testing out of tokamak and within the tokamak hall 

during entire SPARC campaign.  

The workflow in use

Prior to my arrival, at CFS there were multiple codes available to calculate the 

magnetic fields caused by SPARC. The goal of this project was to centralize a 

workflow for 3D magnetic field calculations and version control the coil 

geometries being used. The other standard tool for magnetic field calculations is 

done through ANSYS and is the primary workflow for detailed design and high-

fidelity predictions. However, this workflow is computationally slow, especially 

when evaluating locations further from the tokamak. 

• Debugging stage – still developing these boards for large-scale 

use.  

• AC Qualification testing 

• DC Qualification testing

• Bandwidth testing  

These voltage tap signal conditioners 

have already shown their worth as 

accurate, reliable signal conditioners for 

use within TF coil testing and in 

eventual deployment within the 

tokamak basement. Interesting technical 

challenges plagued the start of their 

bring-up, but now they have been 

showing their promise through the rounds 

of qualification testing. 
Figure 10. Noise floor analysis of various 

gain settings on 16kHz variant.  

Figure 9. Gain spectrum from bandwidth 

testing on 16kHz interface board from 1k 

gain setting. 

This field solver workflow was designed for wide-spread deployment across 

groups at CFS, acting as the source of truth for all future field-solvers. As 

realistic uses for this package range from predictions on induced EMF on the 

instruments by the changing magnetic fields to estimating overturning 

moments due to eddy currents on conducting structures, the package 

needed to offer varying degrees of fidelity. To do this, I built this workflow in 

stages, each with its own optionality. Specifically, the workflow begins by reading 

coil geometries. Then, it moves into calculating the magnetic field per current at a 

series of reference points. And lastly, it multiplies the coil currents through the 

values. 

As this workflow was designed to be faster and more generalized than the 

standard ANSYS one, conducting structures were not included in the model. This 

workflow is a slight overestimation of the rate of change of the fields induced by 

the tokamak, but when solving the engineering problems reliant on these 

calculations, an overestimation is necessary. 

Performance specifications 
For these signal conditioners to meet the desired performance, they had to be designed with particular 

specifications in mind. Further, in the bring-up and qualification testing of these boards, I needed to prove 

whether the boards are hitting the desired specifications. 

Some performance specifications include: 

• High bandwidth

• ~µV noise floor 

• High CMRR 

• Avoidance of sequential logic machines

Some challenges we faced 

Figure 8.

a): Oscilloscope reading of successful test of 

voltage tap signal conditioner. 

b): Oscilloscope reading of unsuccessful test 

of voltage tap signal conditioner. 

Results from selected qualification tests

Prior to starting the qualification testing and real 

bring-up, we needed to solve some issues that 

were plaguing the performance of the boards. 

Specifically, upon start-up, there was a voltage 

railing behavior that had not been there in 

previous iterations of the boards, that destroyed 

the output signal. 

a) 

b) 

Solving this performance issue took up much of 

the initial weeks with the boards, as much trial 

and error was needed to find the fix. 

To reiterate, this workflow is a great tool for getting an estimate of magnetic 

field strength induced by the SPARC tokamak. This is an updateable, 

adaptable package with widespread uses throughout different groups within 

Commonwealth Fusion Systems. 

Figure 3. Plot of coil geometries used to make this 

Biot-Savart calculation within workflow. Only lower 

CS and PF coils plotted for better visibility, and 

selected plasma traces. 
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mhdinn: Compact physics-informed
neural network representations for 3D
MHD equilibria
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INTRODUCTION
Solution of the magnetohydrodynamic force equilibrium equa-
tion (1) is at the backbone of modern stellarator optimization
and data analysis.

F = J×B−∇p = 0 (1)

The most succcessful and commonly used algorithm to solve
this problem is the Variational Moments Equilibirium Code
(VMEC) [2]. VMEC employs a Fourier series representation of
the mapping from the field in magnetic coordinates (ρ, θ, ϕ),
which is completely specified by the pressure and iota profiles,
to geometric coordinates (R, λ, Z). However, this method is pro-
hibitively slow for applications that involve real-time inference,
such as control or flight simulators, as well as data-intensive
algorithms such as stellarator optimization. Moreover, the VMEC
implementation of the Fourier series mapping is neither com-
pact nor differentiable in the ρ coordinate [1], making it subopti-
mal for stellarator optimization.

Neural networks have been used before to directly model VMEC
flux surface topologies for faster inference [3]; however, there
were non-physical artifacts in computation of the second deriva-
tive B. A potential solution is physics-informed learning, where
the network is trained on the force residual (1) as opposed to
simply matching data from VMEC.

PHYSICS-INFORMED FUNCTION
LEARNING
Physics-informed neural networks (PINNs) convert the solution
of PDEs into an optimization problem. A neural network is used
as an ansatz. The weights of the neural network are trained via
gradient descent, with a residual of the relevant PDE/functional
as the loss function (i.e. target function). The loss function
may also contain boundary conditions, data points, etc. After
training, the neural network is a pseudo-analytical solution of
the PDE. No data is required for training.

Example: solving the intial value problem for the heat equation:

∂u

∂t
= k∇2u, u(x, t0) = g(x) (2)

with neural network ansatz N.

Approximation: û(x, t) = g(x) + t · N(x, t; ξ)
Loss function: L = ∂tû− k∇2û

Training: N(x, t; ξ)n+1 = N(x, t; ξ)n + α
∂N
∂ξ

mhdinn
We seek to find a representation with the following properties
simultaneously:

• Compactness and differentiability
• Fast inference time
• Physical consistency up to the second derivative

To this end, we propose mhdinn, a physics-informed neu-
ral netword-based equilibrium code that solves for Fourier
coefficients of the VMEC representation. The basic architec-
ture is depicted in Figure 3. We demonstrate that the code
is capable of function learning MHD equilibria, i.e. learning
Rm,n, λm,n, Zm,n Fourier coefficients as a continuous function
of the radial coordinate ρ for a specific ι(ρ), p(ρ), and boundary
Fourier coefficients :

Approximation: X̂m,n = (R̂m,n(ρ), λ̂m,n(ρ), Ẑm,n(ρ))

= ρm(Xb;m,n + (1− ρ2)Nm,n(ρ)) (3)

Loss function: L = F = J×B−∇p (4)

The loss function is computed in geometric coordinates using
the same expressions initially derived in [2].

METHODOLOGY AND SELECTED RESULTS
mhdinn has been validated on a D-shaped axisymmetric tokamak profile, the Solovev equilibrium problem, as well as several
3D W7-X equilibria. Selected results for a W7-X equilibrium are plotted in Figures 2 and 3, and details the implementation are
provided below. Good agreement is shown between the solution computed with VMEC and mhdinn; the largest error is in prediction
of the location of the magnetic axis (order of centimeters). It should be noted that a similar discrepancy is found when comparing
solutions of VMEC with DESC, another MHD equilibrium solver that uses the force residual as a target function as opposed to the
energy functional (as VMEC does), for the same equilibrium with similarly low mode numbers M and N. The neural network used to
generate the plots below used only 2112 parameters, whereas the VMEC solution would require 23 166 Fourier coefficents for the
same number of toroidal and poloidal modes at a reasonable spatial discretization—a reduction of more than 10x.

Figure 1: Comparison of VMEC Poincare plot and mhdinn
Poincare plots, demonstrating the ability of mhdinn
to replicate VMEC solutions with far less parameters
(M, N = 6, 6)

Figure 2: Mean squared error between mhdinn-computed and
VMEC-computed magnetic axis positions (M, N = 6,
6)

mhdinn implementation
mhdinn has been implemented in python with the high perfor-
mance JAX machine learning framework. It is packaged into
a modular and easy-to-use command-line interface that offers
flexibility in specifying model architecture, size, and training
protocol.

The training process used 50 000 iterations of ADAM-W fol-
lowed by 50 000 iterations of LBFG-S. The loss function was
evaluated over a grid of 54 054 equidistant points in a W7-X
half-field period. The neural networks used are simple multi-
layer perceptrons with two hidden layers of 16 parameters
each.

SYSTEM ARCHITECTURE OF
MHDINN

Figure 3: System architecture diagram of mhdinn, with train-
ing loop higlighted in blue and inference routine high-
lighted in red

KEY ADVANTAGES
Listed below are key advantages of mhdinn as MHD equilib-
rium representations over other methods.

• > 10x compression of VMEC MHD equilibria
• Precisely adjustable spectral density for R, λ, Z (impossible

in VMEC)
• Differentiable and physically consistent up to the second

derivative (as opposed to non-physics informed networks)

MILESTONES AND FUTURE WORK
⊠ Function learning

Progress Training with force residual
Spin-offs Transfer learning, modified loss function, al-

ternative representations to hard-code math-
ematical properties

□ Operator learning
□ Alternative models (e.g. MRxMHD)
□ . . .

CONCLUSION
Physics-informed neural networks offer compact and quickly in-
ferencable representations of MHD equilibria and are promising
candidates for use in data or time-intensive applications, such
as stellarator optimization or flight simulators. We have demon-
strated their effectiveness in compressing solutions of the fixed-
boundary VMEC problem over 10x. Next steps include finding
network architectures that hard-code mathematical properties
of the MHD solutions into the representations for more efficient
learning and more compact representation, exploring more
advanced problems such as MRxMHD, and working towards
operator learning—training a neural network to learn a mapping
from the VMEC input functions (i.e. ι(ρ), p(ρ), Rb(m,n), Zb(m,n)) to
a function that outputs Fourier coefficients as a function of ρ;
i.e. a pseudoanalytical solution of the MHD boundary value
problem over the entire configuration space of a fusion device.
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