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Fusion 101
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Under the extreme conditions required for terrestrial fusion, matter exists in the plasma state…

 Nuclear fusion occurs when two 
atoms collide and fuse together.

 It is one of the most efficient 
energy producing reactions in 
the known universe.

 However, fusion is very difficult 
to produce. 

 Nuclei must be close enough to 
overcome the repulsive 
electromagnetic force.

 At standard conditions, the 
reaction cross-section is 
vanishingly small.

 Consequently, high 
temperatures and pressures are 
necessary to achieve fusion in 
the laboratory.



What is a plasma?



Formal definition of a plasma
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Plasma physics is the study of charged particles collected 
in sufficient number so that the long-range Coulomb 
force is a factor in determining their statistical 
properties, yet low enough in density so that the force 
due to a near-neighbor particle is much less than the 
long-range Coulomb force exerted by the many distant 
particles.

Unlike neutral gases, the 
collective behavior of 
plasmas is affected by 

Coulomb forces.
The Coulomb force 

dominates over near-
neighbor collisions.

Plasmas are a gas-like mixture of charged particles.

So, when does a gas stop behaving like a gas and start behaving like a plasma?

While using some old-timey language, this definition captures the defining characteristics that distinguish 
plasmas from a neutral gas:

From Krall & Trivelpiece, Principles of plasma physics, McGraw Hill 1973.



Neutral gas dynamics
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The behavior of neutral gases can be understood by considering short-range interactions only. 
Specifically, collisions with nearby neighboring particles: 

Consequently, the collective behavior of neutral gases is determined by the properties of one type of interaction: 
mean free path and collision dynamics.

This means clear separation of scales, making it much more straightforward to describe system dynamics.



Ionized gas dynamics
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The defining characteristic of plasmas is that the dynamics are determined by both short- and long-range 
interactions. In addition to collisions, particles also move under the influence of the Coulomb force:

Now, the collective behavior of ionized gases is determined by multi-scale interactions.

This means separation of scales is no longer strictly valid. Describing system dynamics becomes much 
more complex.



Modeling hierarchies



Modeling hierarchies

Microscopic

Multi-fluid models (moments, conservation equations, 3D)

Kinetic models (distribution functions, 6D phase space)

Gyrokinetic models (distribution functions, 5D phase space)

Single-fluid models (moments, conservation equations, 3D)

Macroscopic

6

MHD



Connecting micro- and macroscopic descriptions



Describing a collection of particles
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The instantaneous state of a system of particles can be described by some distribution function:

𝑓𝑓(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡))

The evolution of the system 𝑓𝑓(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡)) in time is described by:

𝐷𝐷𝑓𝑓(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡))
𝐷𝐷𝐷𝐷 = 𝒞𝒞(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡))

Where 𝐷𝐷/𝐷𝐷𝐷𝐷 is the convective derivative and 𝒞𝒞(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡)) is a collision operator that is usually very complex. 

If 𝒞𝒞 𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡) = 0 then it is equivalent to assuming conservation of 𝑓𝑓(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡)). This is known as the Vlasov equation.

If 𝒞𝒞 𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡) ≠ 0 then we have the Boltzmann equation. (Both appear in plasma physics).



Boltzmann equation
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Electromagnetic fields interact with the collective system 𝑓𝑓(𝐯𝐯 𝑡𝑡 , 𝐱𝐱 𝑡𝑡 ) via the Boltzmann equation:

𝜕𝜕𝑓𝑓(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡))
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 𝐱𝐱, 𝑡𝑡 ⋅
𝜕𝜕𝑓𝑓 𝐯𝐯 𝑡𝑡 , 𝐱𝐱 𝑡𝑡

𝜕𝜕𝐱𝐱 𝑡𝑡
+
𝑞𝑞
𝑚𝑚

𝐄𝐄 𝐱𝐱, 𝑡𝑡 + 𝐯𝐯 𝐱𝐱, 𝑡𝑡 × 𝐁𝐁 𝐱𝐱, 𝑡𝑡 ⋅
𝜕𝜕𝑓𝑓(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡))

𝜕𝜕𝐯𝐯(𝑡𝑡)
= 𝒞𝒞(𝐯𝐯(𝑡𝑡), 𝐱𝐱(𝑡𝑡))

To complete the system, we need to include the governing equations for electromagnetic fields.



Maxwell’s equations
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Where 𝜖𝜖0 is the vacuum permittivity and 𝜇𝜇0 is the vacuum permeability. 

In this form, Maxwell’s equations look macroscopic. How do we connect them to the microscopic 𝑓𝑓(𝐯𝐯 𝑡𝑡 , 𝐱𝐱 𝑡𝑡 )? 

∇ ⋅ 𝐄𝐄(𝐱𝐱, 𝑡𝑡) =
𝜌𝜌(𝐱𝐱, 𝑡𝑡)
𝜖𝜖0

∇ ⋅ 𝐁𝐁(𝐱𝐱, 𝑡𝑡) = 0

∇ × 𝐄𝐄(𝐱𝐱, 𝑡𝑡) = −
𝜕𝜕𝐁𝐁(𝐱𝐱, 𝑡𝑡)
𝜕𝜕𝜕𝜕

∇ × 𝐁𝐁(𝐱𝐱, 𝑡𝑡) = 𝜇𝜇0 𝐉𝐉(𝐱𝐱, 𝑡𝑡) + 𝜖𝜖0
𝜕𝜕𝐄𝐄(𝐱𝐱, 𝑡𝑡)
𝜕𝜕𝜕𝜕

Charge density

Current density

Maxwell’s equations:
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Velocity space averages

 A distribution function is defined in a 6D phase space: 𝐱𝐱 𝑡𝑡 , 𝐯𝐯 𝑡𝑡 .

 Moments average over velocity space (3D), which connects the 6D microscopic (kinetic) description to the 3D 
macroscopic (fluid) description.

 As we will see, each moment can be associated with a fluid conservation equation.

The operation:

∫ 𝐯𝐯𝑘𝑘𝑓𝑓𝑠𝑠 𝐱𝐱 𝑡𝑡 , 𝐯𝐯 𝑡𝑡 𝑑𝑑𝐯𝐯

Is known as taking the 𝑘𝑘th-order moment of the distribution function 𝑓𝑓𝑠𝑠 𝐱𝐱 𝑡𝑡 , 𝐯𝐯 𝑡𝑡 , 𝑡𝑡 , where 𝑘𝑘 ≥ 0.
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Moments of the distribution function

 Zeroth order moment: number density (of species 𝑠𝑠)

𝑛𝑛𝑠𝑠 𝐱𝐱, 𝑡𝑡 = �𝑛𝑛𝑠𝑠∫ 𝑓𝑓𝑠𝑠 𝐱𝐱 𝑡𝑡 , 𝐯𝐯 𝑡𝑡 𝑑𝑑𝐯𝐯

 First order moment: average velocity (of species 𝑠𝑠)

𝑛𝑛𝑠𝑠 𝐱𝐱, 𝑡𝑡 𝑽𝑽𝑠𝑠 𝐱𝐱, 𝑡𝑡 = �𝑛𝑛𝑠𝑠∫ 𝐯𝐯𝑓𝑓𝑠𝑠 𝐱𝐱 𝑡𝑡 , 𝐯𝐯 𝑡𝑡 𝑑𝑑𝐯𝐯

 Second order moment: stress tensor (of species 𝑠𝑠)

𝐓𝐓𝑠𝑠 𝐱𝐱, 𝑡𝑡 = �𝑛𝑛𝑠𝑠𝑚𝑚𝑠𝑠∫ 𝐯𝐯𝐯𝐯𝑓𝑓𝑠𝑠 𝐱𝐱 𝑡𝑡 , 𝐯𝐯 𝑡𝑡 𝑑𝑑𝐯𝐯

 Note: We define �𝑛𝑛𝑠𝑠 (average number of particles per unit volume) such that ∫ 𝑓𝑓𝑠𝑠 𝐱𝐱 𝑡𝑡 , 𝐯𝐯 𝑡𝑡 𝑑𝑑𝐯𝐯 = 1.

 From this, we can use conservation equations to build fluid descriptions of plasmas.
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Basic fluid conservation equations

 For every charge species (𝑠𝑠), we have a set of mass, momentum and energy conservation equations:

𝜕𝜕𝜌𝜌𝑠𝑠(𝐱𝐱, 𝑡𝑡)
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝜌𝜌𝑠𝑠 𝐱𝐱, 𝑡𝑡 𝑽𝑽𝑠𝑠(𝐱𝐱, 𝑡𝑡)) = collisions

𝜌𝜌𝑠𝑠 𝐱𝐱, 𝑡𝑡
d𝑽𝑽𝑠𝑠(𝐱𝐱, 𝑡𝑡)

d𝑡𝑡 = 𝑞𝑞𝑠𝑠𝑛𝑛𝑠𝑠 𝐱𝐱, 𝑡𝑡 𝐄𝐄 𝐱𝐱, 𝑡𝑡 + 𝑽𝑽𝑠𝑠 𝐱𝐱, 𝑡𝑡 × 𝐁𝐁 𝐱𝐱, 𝑡𝑡 − ∇ ⋅ 𝐏𝐏𝑠𝑠 𝐱𝐱, 𝑡𝑡 + collisions

3
2𝑛𝑛𝑠𝑠

(𝐱𝐱, 𝑡𝑡)𝑘𝑘
𝜕𝜕𝑇𝑇𝑠𝑠 𝐱𝐱, 𝑡𝑡

𝜕𝜕𝜕𝜕 + 𝑽𝑽𝑠𝑠 𝐱𝐱, 𝑡𝑡 ⋅ ∇𝑇𝑇𝑠𝑠 𝐱𝐱, 𝑡𝑡 + ∇ ⋅ 𝐪𝐪𝑠𝑠(𝐱𝐱, 𝑡𝑡) + 𝐏𝐏𝑠𝑠(𝐱𝐱, 𝑡𝑡):∇𝑽𝑽𝑠𝑠(𝐱𝐱, 𝑡𝑡) = collisions

 Where 𝜌𝜌𝑠𝑠 𝐱𝐱, 𝑡𝑡 = 𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠(𝐱𝐱, 𝑡𝑡) is the mass density and 𝜌𝜌𝑠𝑠 𝐱𝐱, 𝑡𝑡 𝑽𝑽𝑠𝑠(𝐱𝐱, 𝑡𝑡) is the mass density flux and 𝐏𝐏𝑠𝑠(𝐱𝐱, 𝑡𝑡) is the 
pressure tensor and 𝒒𝒒𝑠𝑠 𝐱𝐱 𝑡𝑡 , 𝑡𝑡  is the heat flux density.

 These equations are still quite complicated (and we haven’t even elaborated on the collisions!). 



The closure problem
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 Notice that each moment of the Boltzmann equation introduces another unknown variable.

 Since, in principle, there is no limit on the number of moments that can be taken, the system is not closed.

 In the macroscopic context, closures are often imposed to relate the temperature or density to the pressure.

 The simplest closure is the adiabatic equation of state:

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝(𝐱𝐱, 𝑡𝑡)
𝜌𝜌 𝐱𝐱, 𝑡𝑡 𝛾𝛾 = 0

 Which implies that the plasma behaves like an ideal gas.

 When this closure is used, energy conservation is not needed since temperature does not appear as a variable.

This is known as the “closure problem”. As yet, there is no solution.



Towards single-fluid models
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Multi-fluid models

 When combined with Maxwell’s equations, the conservation equations we have just seen are well-suited to 
describing multi-species plasmas.

 A common subset of these models are the so-called two-fluid models, which treat a single ion and electron 
species.

 Multi-fluid models are commonly used to describe edge physics in magnetically confined fusion plasmas and 
MHD turbulence:

From: J Friedrich et al 2016 New J. Phys. 18 125008
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Single-fluid variables

Physical quantities in single fluid models come from summing over all species:

Mass density:

𝜌𝜌 𝐱𝐱, 𝑡𝑡 = �
𝑠𝑠

𝑛𝑛𝑠𝑠(𝐱𝐱, 𝑡𝑡)𝑚𝑚𝑠𝑠

Charge density:

𝜌𝜌𝑐𝑐 𝐱𝐱, 𝑡𝑡 = �
𝑠𝑠

𝑛𝑛𝑠𝑠(𝐱𝐱, 𝑡𝑡)𝑞𝑞𝑠𝑠

Center-of-mass velocity:

𝐕𝐕 𝑥𝑥, 𝑡𝑡 =
∑𝑠𝑠 𝑛𝑛𝑠𝑠 𝐱𝐱, 𝑡𝑡 𝑚𝑚𝑠𝑠𝑽𝑽𝑠𝑠(𝐱𝐱, 𝑡𝑡)

∑𝑠𝑠 𝑛𝑛𝑠𝑠 𝐱𝐱, 𝑡𝑡 𝑚𝑚𝑠𝑠

Total current density:

𝑱𝑱 𝐱𝐱, 𝑡𝑡 = �
𝑠𝑠

𝑛𝑛𝑠𝑠 𝐱𝐱, 𝑡𝑡 𝑞𝑞𝑠𝑠𝑽𝑽𝑠𝑠(𝐱𝐱, 𝑡𝑡)
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Common macroscopic assumptions

 The first common approximation is to assume quasi-neutrality:

𝑛𝑛𝑒𝑒(𝐱𝐱, 𝑡𝑡) = 𝑍𝑍𝑛𝑛𝑖𝑖(𝐱𝐱, 𝑡𝑡) where 𝑍𝑍 is the effective charge. 

 As a consequence, 

∇ ⋅ 𝑱𝑱 𝐱𝐱, 𝑡𝑡 = 0

 Some higher-order terms are also neglected:

𝑛𝑛𝑛𝑛𝐕𝐕(𝐱𝐱, 𝑡𝑡) ⋅ ∇𝐕𝐕(𝐱𝐱, 𝑡𝑡) = 0 and ∇ ⋅ 𝑱𝑱(𝐱𝐱, 𝑡𝑡)𝐕𝐕(𝐱𝐱, 𝑡𝑡) = 0

 Another common approximation is to neglect terms 𝑚𝑚𝑒𝑒/𝑚𝑚𝑖𝑖 since 𝑚𝑚𝑒𝑒/𝑚𝑚𝑖𝑖 ≪ 1. This implies 𝜌𝜌 𝐱𝐱, 𝑡𝑡 = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖(𝐱𝐱, 𝑡𝑡).

 The dominant contribution of the collisional term in generalized Ohm’s law is through electrical resistivity. This is 
often represented as −𝜂𝜂𝑱𝑱(𝐱𝐱, 𝑡𝑡).
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Reduction to a single-fluid visco-resistive model

 Putting all of this together, we arrive at a standard set of equations for a single-fluid MHD model:

∇ × 𝐁𝐁(𝐱𝐱, 𝑡𝑡) = 𝜇𝜇0𝑱𝑱(𝐱𝐱, 𝑡𝑡)

∇ × 𝐄𝐄(𝐱𝐱, 𝑡𝑡) = −
𝜕𝜕𝐁𝐁(𝐱𝐱, 𝑡𝑡)
𝜕𝜕𝜕𝜕

∇ ⋅ 𝐁𝐁(𝐱𝐱, 𝑡𝑡) = 0

𝜕𝜕𝜕𝜕(𝐱𝐱, 𝑡𝑡)
𝜕𝜕𝜕𝜕 + ∇ ⋅ (𝜌𝜌 𝐱𝐱, 𝑡𝑡 𝐕𝐕(𝐱𝐱, 𝑡𝑡)) = 0

𝜌𝜌 𝐱𝐱, 𝑡𝑡
𝜕𝜕𝐕𝐕 𝐱𝐱, 𝑡𝑡
𝜕𝜕𝜕𝜕 + 𝐕𝐕 𝐱𝐱, 𝑡𝑡 ⋅ ∇𝐕𝐕 𝐱𝐱, 𝑡𝑡 = 𝑱𝑱 𝐱𝐱, 𝑡𝑡 × 𝐁𝐁 𝐱𝐱, 𝑡𝑡 − ∇𝑝𝑝(𝐱𝐱, 𝑡𝑡) + 𝜇𝜇∇2𝐕𝐕(𝐱𝐱, 𝑡𝑡)

𝐄𝐄(𝐱𝐱, 𝑡𝑡) + 𝐕𝐕(𝐱𝐱, 𝑡𝑡) × 𝐁𝐁(𝐱𝐱, 𝑡𝑡) = 𝜂𝜂𝑱𝑱(𝐱𝐱, 𝑡𝑡)

Maxwell’s equations:

Conservation 
equations:



The ideal MHD limit
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“Frozen-in” flux

 When 𝜂𝜂 = 0, the plasma is said to be ideal.

 Ohm’s law reduces to 𝐄𝐄(𝐱𝐱, 𝑡𝑡) + 𝐕𝐕(𝐱𝐱, 𝑡𝑡) × 𝐁𝐁(𝐱𝐱, 𝑡𝑡) = 0.

 The magnetic field must move with the fluid. This is known as the frozen-in flux condition.

 Since the connectivity of magnetic field lines cannot change, the magnetic field structure is preserved exactly.



MHD equilibria



19

Macroscopic equilibrium

 If we consider the momentum conservation equation in the single-fluid ideal MHD model:

𝜌𝜌 𝐱𝐱, 𝑡𝑡
𝜕𝜕𝐕𝐕 𝐱𝐱, 𝑡𝑡
𝜕𝜕𝜕𝜕

+ 𝐕𝐕 𝐱𝐱, 𝑡𝑡 ⋅ ∇𝐕𝐕 𝐱𝐱, 𝑡𝑡 = 𝑱𝑱 𝐱𝐱, 𝑡𝑡 × 𝐁𝐁 𝐱𝐱, 𝑡𝑡 − ∇𝑝𝑝(𝐱𝐱, 𝑡𝑡) + 𝜇𝜇∇2𝐕𝐕(𝐱𝐱, 𝑡𝑡)

 Then static (𝐕𝐕 = 0) equilibrium (𝜕𝜕𝑡𝑡 → 0) limit, we are left with:

0 = 𝑱𝑱(𝐱𝐱, 𝑡𝑡) × 𝐁𝐁(𝐱𝐱, 𝑡𝑡) − ∇𝑝𝑝(𝐱𝐱, 𝑡𝑡)

 Together with Maxwell’s equations:

∇ × 𝐁𝐁(𝐱𝐱, 𝑡𝑡) = 𝜇𝜇0𝑱𝑱(𝐱𝐱, 𝑡𝑡)

∇ ⋅ 𝐁𝐁(𝐱𝐱, 𝑡𝑡) = 0

 Solutions of this system are said to be “ideal MHD equilibria” although, really, they satisfy ideal MHD force 
balance.
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The force-free MHD equilibrium model

 When the Lorentz force (𝑱𝑱 × 𝐁𝐁) is negligible, the ideal MHD equilibrium model can be further simplified: 

∇ × 𝐁𝐁(𝐱𝐱) × 𝐁𝐁(𝐱𝐱) = 0

∇ ⋅ 𝐁𝐁(𝐱𝐱) = 0

 Which gives the nonlinear force-free equilibrium model:

∇ × 𝐁𝐁(𝐱𝐱) = 𝛼𝛼 𝐱𝐱 𝐁𝐁(𝐱𝐱)

𝐁𝐁(𝐱𝐱) ⋅ ∇𝛼𝛼(𝐱𝐱) = 0

 And the linear force-free equilibrium model if 𝛼𝛼 is constant. 

 Force-free models are used in e.g., solar physics and some fusion applications.
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The ideal MHD equilibrium model via energy minimization

 A common construct for deriving the ideal MHD force balance is to minimize potential energy:

𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
Ω

𝑝𝑝(𝐱𝐱)
𝛾𝛾 − 1

+
𝐁𝐁(𝐱𝐱) 2

2𝜇𝜇0
𝑑𝑑𝑑𝑑

 Using calculus of variations, 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is stationary when:

𝐉𝐉(𝐱𝐱) × 𝐁𝐁(𝐱𝐱) − ∇𝑝𝑝(𝐱𝐱) = 0

 Which is the ideal MHD force balance condition.

 Energy minimization is the theoretical basis for several 3D MHD equilibrium codes (e.g., VMEC, SPEC).

 Energy ‘minimization’ also depends critically on the choice of variations (i.e., what you are minimizing with respect 
to). It gives the same equation, but the physical interpretation of the solution is nuanced.



Tools for describing stellarator plasmas:

Coordinate systems



References
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 The following text is a very good reference on the various three-dimensional coordinate systems that 
are used in stellarator physics:



Canonical cylindrical coordinates

23

A natural coordinate system for toroidal geometry is the usual (global) cylindrical coordinates: {𝑅𝑅,𝑍𝑍,𝜙𝜙}



Canonical toroidal coordinates

24

In many cases, however, it can be convenient to use the fact that there are two periodic directions in a toroidal domain. 

To do this, we can define a toroidal coordinate system:

{𝑟𝑟, 𝜃𝜃,𝜙𝜙} where 𝜃𝜃 and 𝜙𝜙 are both 2𝜋𝜋 periodic



Choosing a radial coordinate
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Under this circumstance, using the geometric radius (𝑟𝑟) as the radial coordinate can be inconvenient.

By definition, the cross-section of a stellarator varies with toroidal angle:

Figure from: A. Bader et al., Journal of Plasma Physics 86.5 (2020).



Magnetic coordinates



The magnetic field in terms of scalar potentials
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 We can use knowledge of the magnetic field structure for a more “convenient” toroidal coordinate system.

For a three-dimensional magnetic field, 𝐁𝐁 𝐱𝐱 , we can use a generalized Clebsch representation:

𝐁𝐁 𝐱𝐱 = ∇𝜓𝜓(𝐱𝐱) × ∇𝜃𝜃(𝐱𝐱) + ∇𝜙𝜙(𝐱𝐱) × ∇𝜒𝜒(𝐱𝐱) 

Where 𝜓𝜓(𝐱𝐱), 𝜃𝜃(𝐱𝐱), 𝜙𝜙(𝐱𝐱), 𝜒𝜒(𝐱𝐱) are some scalar potentials.

 In this case, 𝜃𝜃(𝐱𝐱) and 𝜙𝜙(𝐱𝐱) are a poloidal and toroidal angle, respectively, while:

Ψ𝑡𝑡 ≡ ∫ 𝐁𝐁 𝐱𝐱 ⋅ 𝑑𝑑𝐒𝐒𝑡𝑡 = 2𝜋𝜋𝜋𝜋(𝐱𝐱)
Ψ𝑝𝑝 ≡ ∫ 𝐁𝐁 𝐱𝐱 ⋅ 𝑑𝑑𝐒𝐒𝑝𝑝 = 2𝜋𝜋𝜋𝜋(𝐱𝐱)

 Are the total toroidal and poloidal enclosed fluxes, 𝑑𝑑𝐒𝐒𝑡𝑡 and 𝑑𝑑𝐒𝐒𝑝𝑝 are the toroidal and poloidal cross sectional 
differential area elements.



Illustration of enclosed fluxes
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Poloidal flux

Toroidal flux



Magnetic fields and toroidal coordinates
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 Consider a general 3D magnetic field given by:

𝐁𝐁 𝐱𝐱 = ∇𝜓𝜓(𝐱𝐱) × ∇𝜃𝜃(𝐱𝐱) + ∇𝜙𝜙(𝐱𝐱) × ∇𝜒𝜒(𝐱𝐱) 

 Consider the component parallel to ∇𝜙𝜙(𝐱𝐱):

𝐁𝐁 𝐱𝐱 ⋅ ∇𝜙𝜙 = ∇𝜓𝜓 𝐱𝐱 × ∇𝜃𝜃 𝐱𝐱 ⋅ ∇𝜙𝜙

 This contains variables associated with two sets of coordinates 𝑥𝑥𝑖𝑖′ , 𝑥𝑥𝑗𝑗′ , 𝑥𝑥𝑘𝑘′  and 𝜓𝜓,𝜃𝜃,𝜙𝜙 .

 If 𝐁𝐁 𝐱𝐱 ⋅ ∇𝜙𝜙 ≠ 0 then the expression is invertible, and we can write:

𝐱𝐱 = 𝐱𝐱(𝜓𝜓, 𝜃𝜃,𝜙𝜙)



Level sets and scalar plasma properties
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 Consider a coordinate system 𝑓𝑓,𝜗𝜗,𝜑𝜑  and assume we can decompose 𝐁𝐁:

𝐁𝐁 𝑓𝑓,𝜗𝜗,𝜑𝜑 = ∇𝑓𝑓 × ∇𝑔𝑔(𝑓𝑓,𝜗𝜗,𝜑𝜑)

 By definition, 𝐁𝐁 𝑓𝑓,𝜗𝜗,𝜑𝜑  will be tangent to surfaces of constant 𝑓𝑓 since:

𝐁𝐁 𝐱𝐱 ⋅ ∇𝑓𝑓 𝐱𝐱 = 0

 Assuming 𝜗𝜗 and 𝜑𝜑 are 2𝜋𝜋-periodic, in toroidal geometry, 𝑓𝑓 is like a radial coordinate.

 Recall that the toroidal flux is defined as:

Ψ𝑡𝑡 ≡ ∫ 𝐁𝐁 𝐱𝐱 ⋅ 𝑑𝑑𝐒𝐒𝑡𝑡 = 2𝜋𝜋𝜋𝜋(𝐱𝐱)

 If we choose 𝑓𝑓 to be 𝜓𝜓, then we can define a set of flux coordinates:

𝜓𝜓,𝜗𝜗,𝜑𝜑



Magnetic field dependent coordinates
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 While convenient for some applications, flux coordinates can only be defined if:

𝐁𝐁 𝜓𝜓,𝜗𝜗,𝜑𝜑 = ∇𝜓𝜓 × ∇𝑔𝑔(𝜓𝜓,𝜗𝜗,𝜑𝜑)

The validity of this decomposition is dependent on the magnetic field.

 Specifically, it is dependent on the magnetic field structure. 

 For the decomposition to be valid globally, 𝐁𝐁 𝜓𝜓,𝜗𝜗,𝜑𝜑  must have level sets that are continuously nested about a 
single axis. 

 In stellarator parlance, the magnetic field must have continuously nested flux surfaces:

Magnetic axis

Flux surface



Straight field line coordinates

31

 There is a special type of flux coordinates, known as straight field line coordinates.

 As the name suggests, in this coordinate system, the toroidal and poloidal angles are linear with respect to one 
another.

 The proportionality constant is related to the rotational transform.

 This coordinate system can be convenient and used to define certain symmetries of the magnetic field.
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