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Gradients in plasma lead to unwanted turbulence

Density and temperature

gradients:
Global Gyrokinetic Simulation of
Turbulence in
ASDEX Upgrade
Turbulence!
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Wendelstein 7-X:
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Fluctuations in fusion plasmas

* Observed features:

 Everything fluctuates
(n, Te, Ti, electromagnetic fields)

| S

~0.1..1%

* Fluctuation levels tend to be small — o

* Fluctuation frequencies: 10 — 1000s kHz
are smaller than the gyrofrequencies

» Perpendicular fluctuation scales much smaller than
the system size — on the order of the gyroradius

 Fluctuations extended along the field lines

Can’t use MHD,
but allows the use of gyrokinetics!
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The kinetic equation — a continuity equation of the distribution
in 6D phase space

 Kinetic description — intermediate step between fluid description and
resolving single-particle dynamics

» Describe evolution of particles in terms of distribution function f, of particles
in 6D phase space z (3D real space x, 3D velocity space v)

N Z(z_—l—ﬁg)f(zqtéz)
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The kinetic equation... now in more convenient coordinates

afa €q
W_I_V.vxfa_l_ Mg

(E4+v x B)-Vyfs = Calfa)

* Freedom in choosing suitable coordinates for x and v

« Make use of coordinates related to the gyromotion:

» Gyro angle 19
2
ma0
+ Energy £ ="+ e
mav3
« Magnetic moment =55
b
» Gyro-centre R=r+ ahd
(),
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The kinetic equation in more convenient coordinates cont’d

% . afa afa afa afﬂ_c
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We can simplify:
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Simplifying the kinetic equation some more

We decompose the distribution function fa — faO + La,
fao equilibrium function including adiabatic responses to small electric fields ox —6’a4)/ T,
ga Small non-adiabatic part with §a < faO

Assumptions:
« Equilibrium varies slowly in time c.f. perturbed part g afao

« But allow Vga ~ Vfao. of of

« And further: small perturbations in electrostatic field, equilibrium length scales L large compared
with gyroradius, frequencies of instabilities w small compared with gyrofrequency:

(’a(P w
T, L a, "0
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Your turn: ordering of the terms in é

B_fa R afa afa afa dfa —C

or TRGR 0% TE%s Thg, =
19 ~ _Qa : — e —
oo (at)r

— a?a afao
fa faO + 9% S < fao Vga~Vfuo 51‘ > Y
aga afaO
oe < og
aga afaO

ou < ou
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In lowest orders

Equilibrium is independent of gyroangle:

Ofawo 9¢s . O

In next order +

NIV
5t T ar TR 3g fao+8a) — Qg

dfa0/30 =0

Bcp 0 fa0
"ot of
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+ﬂ faO
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Now choosing the equilibrium to be represented by a Maxwellian
(follows from drift kinetics in lowest order, at high collisionality)

3/2
— Ma ,—&/Ta(y)
faO — ”a(lp) ( ) € « Note:
271’Ta(lp) 2/ density n and temperature T are
"1 _ 2 e assumed to be flux quantities
~ 1q(1) (ZnTaa(tp)) e~ Mav"/2Ta(Y) (1 — ,;Z)) with flux label
 Then: afaO _ 0
of
afaO —0
o
afaO L faO

0~ T,



Splitting the movement into parallel and gyro motion

Assuming the particle mostly moves along the field R = v”B + O(dvT)

. d d
We obtain égta +R- —(fa0+g“) %__ ( 4)) Jao =Ca
98a
All terms are of order O(dwf,) with w ~ vr/L, except (21—~ 38 w fao as largest term
We can thus expand ¢; = Q40 + {41 + ... Yielding in lowest order Qaag:;o =0

In next order after gyroaveraging hile keeping the gyro centre constant

agfo + (R)R - a?z (fao + a0) — <(?;f)> fao = (Ca)r




Averaging out the fast gyromotion

 Magnetic field —> reduction to 5D phase space

Image source: Garbet et al. Nucl. Fusion (2010).
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Splitting the velocity

_bxV(g)r
- B

b v?
Vda:Q—X T_LVIHB-{-UﬁK
a

VE
Splitting the velocity: (R}R = % §£R dd = v“f) + VE + vy,

Using that f,, is a flux function and thus does not vary along the field lines b - V f;,0 = 0,

9gs I
§t0+ v b+ Vi | V80— (C)g = — VE ’Vfa0+%<(a_(f)r>Rfao

nonlinear Neoclassical response




Executing the gyroaverages: — < (84’) > fa0

ot Slowly varying

Have slow variation along the field but fast across it, can write: ¢(r,t) = cf)(r, w)e'(‘s(‘)/‘s““’t),

: Vs !
Define ki = —5 with kip = 0O(1) Fast variation
Ballooning transform allows assumption of V”S = 0.

thon (%) ), = i 0+ Y ~ iR (G580
r/ R R

ot
' ' ik - k,v :
where <e’S(R+p)/5> ~ ¢15(R/9) <elk.L P> = Jo (2) oS(R/5)
R R QF
0 , k .
So that <(_¢) > = —iw]o ( le) 4)(R,t) Bessel function of zeroth order
at r/ R Qa 27T o 27T
/ gixsing g / Sl =)
Jo Jo
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b X

Executing the gyroaverages —vi-Vf,=—

Vip)r = V(p(R+p))r
~V [¢(R) <ezs R+p)/5>Re—iwt]

~V (cf)(R)e—iwteiS(R)/alo (kgu))

" it i VS_ [(k,v VS V4>(R)
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We thus obtain

kio)

—ve -V = ifo ( 5 ) o(R, t)%kl b X Vfao




Simplify further with gradients in the distribution function

With f,, being a flux function: V¥ f,0 = 8;:;)0 Vi

Magnetic field in Clebsch coordinates: B= V¢ x Va =2 k; =kyV§p +kVa

Obtain  —vg-Vfy = i]()(l?b (V9 x k) dfao

B oY
. dinn E 3\dInT,
:Z]()(I)ka[ dll)a—I_(Tg_E) le [1] faO
e
= l]o%wzafao

dinT, /dlnn
T [Hna(,ﬁ g)] w. - Tkadlnng 7 a
a

With Wy, = Wxa en  dy dip dip
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Final step: same separation also in g,

With  2w0(R, &, 1,t) = 6,(R, &, u)e SR/ =wh)

i 9g4 " A . A i —w
Obtain % n (v||b+Vda) Va0 [U“v“ga —i(w _wda)ga] pi(S(R)/d—wt)

With Wi = k1 - vy,

Leaving out terms A and B (nonlinearity and neoclassical response) and collisions

e,

T __Hq T
U”V“ga l(CU wda)ga — Ta ]O(P (C(J w*a) fao
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Suitability of gyroaveraging: small gyration
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Gyromotion small Gyromotion large
compared with background: compared with background:
gyroaveraging allowed gyroaveraging not allowed
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