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How do we end up with turbulence?
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Turbulence comes from perturbations that grow (i.e.
instabilities), which then interact

Geometry of magnetic field
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Thanks to Paul Mulholland for this animation!
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Magnetic field:
Out of page




Drift waves
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Drift waves
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Drift waves — adiabatic response of the electrons
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Drift waves — adiabatic response of the electrons
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Drift waves — adiabatic response of the electrons
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Drift waves — adiabatic response of the electrons

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN



Drift waves
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Drift waves
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Drift waves
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Drift waves
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Drift waves
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Trapped-particle mode
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Trapped-particle mode

Drifts from curvature and
gradient of the magnetic field,
only non-vanishing for
trapped particles
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Trapped-particle mode
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Trapped-particle mode
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Trapped-particle mode
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Trapped-particle mode
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ITG yet again, but a different cartoon ©
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How would we actually calculate this?

Start from linearised, electrostatic gyrokinetic equation

0V 18 — i(w — W4 )&a

zea

]O(P (w w*a) faO
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The ITG dispersion relation

- Dispersion relation D(w,k;, @) = Dy(w, k,, ¢)

T; | W (Ufi Fui 3
(147 0@ = | Z=24 M B o)) v,

« Local approach

T; a)—a)f- Fyi
Dipe = (1 —)—f L 12 (ke py) A3
loc ( +Te ©— wgy 1y Jo (ko py) d*v;

- Problematic - local growth rate & freq solution w (1)
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The ITG dispersion relation

- Dispersion relation D(w,k;, @) = Dy(w, k,, ¢)

T; . w_wIiFMi 2 3
(1+T3)M_fw—wdi N, IO(klpi)Md Vi

« Local approach

T; a)—a)f- Fyi
Dipe = (1 —)—f L 12 (ke py) A3
loc ( +Te ©— wgy 1y Jo (ko py) d*v;

- Problematic - local growth rate & freq solution w (1)
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After executing the integrals

2 [ [ wg—wl  wg-wl o o .
Integral to solve: \ﬁ/—oofo (1 + o0  w? ) €Xp (— (xJ_ +x”)) z 1 Jodddz)dz
, | —B++vVB?—-4AC
Have quadratic equation w =
2A

To;
with A =To(b) — (1 L b )

TOe

B = w.(1— m)To(b) + mbT1(b) + 52 (2 — BTo(b) + BT (5)

o adzw* ( ((2 . b)I‘o(;) + bI‘l(b)) | g (2(b —1)2T(b) ; (3 — 2b)Ty (b)))

e : kip)®
Modified Bessel functions I'j,(b) = exp(—b)I,(b) b= ( 2p)
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Obtaining a local solution for w(k )

Most obvious in strongly driven regime w ~ wy; >» wy;(l)

« Expansion gives quadratic dispersion relation
“bad” curvature

Magnetic field strength

(Wr, Y)Lref/Cret

where negative
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ITG beyond the local approach - method

« Eigenmode physics = w system property, not local quantity
 Neglected non-local quantity D;,.(w,De(l) =0

« Mode localisation should balance geometry variation

« Consider field-line global dispersion relation

dl
Dgiop = fDloc(w: l)lcp(l)lzm

« Zeros Dy,

*  {R[Dyion] 3[Pgi0n]} = {0,0} > can solve for unknown R{w}, J{w}

» = 0 satisfy variational property [20]
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ITG beyond the local approach - first results

« Parameters: ¢/, = 1.5, %/, = 4.5 and flux-tube at s = 0.5

« Using GENE ¢ (6) - expect accurate reproduction of GENE w (iff t-ITG)

0.8
0.8 =8= GENE
, e Strongly driven limit
0.6 1 ¥
,(
» 0.6 1
0.4 1 o
o /
2 ’ 5
S 021 | L S04
3 0.0
0.2
—0.2 1
] / -m= GENE 0.4 0.0
l = Strongly driven limit o
0.5 L0 L5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
k?// vef ki‘// )I‘(_‘f klfp ref k?_,,p ref
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ITG beyond the local approach — reintroducing the resonances

T
w—-wl; Fuyi
«  Reintroduction of resonances in Dj,, X f : Ml]g (k,p;) d3v,-

W—Wgi No
T
w— W, Fyi ( 3 ) Wyj (WyE 5 we 1y _,
kyp) d3v; = To(b) — w,; (1 —=n,)J° + — ;) TP+, (L — 2
jw—a)di N, ]0( J_.DL) l O( ) * an <.7 2 Wi ni JJ_ * Wi 2 c7||
b= (kipri)® , 1 [ eloywé dé¢
2 2 J° = - :
v -
a)dl — a)VB ZUJ- + (,()Kv% Loy, J \/1 + 210—)/(‘)}(5 1+ lO'),(A)VBt,z +b
le . Tl (72 B 2 f eiawa df
— i .
W a)R + ly lO'y : (1 + Zio.ywkf):s/z 1+ lO'y(Uvgf +b
, 1 . eiO'wa df
T 1 _|_ vz _ 3 J" B iO'y,[ (1 + 2io.w 5)3/2 1+ iO'y(UVBf +b
ol = w,; | 1+, S ; o

2v2 2

oy = sgny
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Beyond the global approach - results

* Including resonances - significant quantitative improvements
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Technically: locality issues solved with keeping vV, g,

e,

] — __“ T
v”V”ga — z(w — wda)ga — Ta ]()(P (w w*a) faO

Expand the parallel term (still ordered small, but not neglected)

T Z @
w— wl. ' vu a U" 32 eo..»

= Jo() m—=| | —i - — 1
g f . ‘ w—wg d  (w— dg)? 2 i

[Wesson Tokamaks, Ch. 8 Eq. 8.3.5]
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Now onto trapped-electron modes

Start from linearised, electrostatic gyrokinetic equation

ze,,

v“V”ga (w (Uda) ]O(P ((U w*a) faO

Passing particles don'’t really drift Trapped particles do! Within the surface! - can resonate with drift waves
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Now onto trapped-electron modes

Start from linearised, electrostatic gyrokinetic equation

v||V||ga—l(w Wila)Qa =

ey

]04) (w w*a> faO

TURBULENCE IN FUSION PLASMAS - JOSEFINE PROLL

» Keep electron dynamics

» Only trapped electrons experience a
drift on average

* Movement fast so can average over
this bounce motion

* First, obtain the solution g,

iPad time ©
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The trapped-particle mode (TPM)

(both ions and electrons are bouncing quickly compared with the mode frequency)

If the mode frequency is slow compared with the bounce motion of both ions and electrons,

Wi K W K Wp K W

use the solution

B eq— (w —wly)
8a = \/%_a]O(P (w _wda)fao

And obtain the dispersion relation
2
a

T
Zn%i ¢ = @Ze“/t 8%(&) f*“)faodv

a a rapped P (w - wda)
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One time ¢, one time

The dispersion relation of the TPM with bounce average...

Multiply by neez(l)*/Te

1nae> ey A0 — W)
Start from ; %H’QP = @;ea /trappedT[:z(P (@ _wdzgfaodv And integrate along field line d]/ /B

_ -1 _
Assume small drift frequencies 1 _1 (1 _ wdﬂ) ~ 1 (1 + wdn)

W — Wy, w w w w
And notice: Wy = —Wxe/T and wy; = —wg,/T with T = T/ T;

o
UTa

. 1,62 2n.e® [ _ 2147 1wl @y, . _
Obtain (1+7) T,(P: — Pe xz[ e ( - ’Z}zd )]dx with x =

Now: convenient coordinates trick! New velocity coordinates!

BrrvddodA v? . v
dv = 27tv  do dv:E A= L _F o=
1dv do) - EN 2B E o]
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Turning ¢ also into a bounce average

h(n) qi
With defining different trapping wells n and unique bounce times :(%) :/

hm o)l
0 dl 1 /°° _ .dl /°°
2 * 3
— = — 2 o do
/—oo i B 7t303:'re —o0 44 B & Jo

) /1/Bm B s, [(1 B lwfewﬂh,)]
0 |U||| T w?

1 o 3 1/Bm1n
=) — 7T0 dv/ dA
; vV 7t3v?:’re )/0 0

1(m)

2ok 0?0, _leewde dl
X;/—z{") b ! [(1 T w? 7]

. o0 o 1/ Bmin 1 T —
Obtain / 2dl _ 2 / 7'w3dv/ dA Y (@2 pe " e [(1 - —w*ewde)]
) b A

T w?

1.1 1 poo_ 33 1/By oRe " "ewT g
Or , t=ng Jo moido [ d/\E@C VT e T

dl 1 1 1/Bin —12..—12
5103 % — =ma Jo moddo [ dA Y, |§2e /7Ty,

3
Te

TURBULENCE IN FUSION PLASMAS - JOSEFINE PROLL 39



We can juggle with some inequalities...

1 1 1 3 1/B H12,— 2 /92 I =
?WTI o dvf "AAY, [¢|%eT? /vT"w*ewdeTbﬂ

1/ Bmin Al2o—
[% 10P — ok i P do 3P dA T, [FPe ™ e,

If we define an inner product like this: (gf) = /g*f%
I

We can use Schwartz’ inequality [{(g f)|* < (ff){¢¢) and thus |$|2 < |¢|?

1 ]. (o 9] 1/Bmin _ _1)2 1}2
pTerey /0 7o do /0 dA ) [gl’e ™
i . . < 11 /oo 7w3dv/l/Bmin d/\ZWL v/ e
Denominator is always positive! 73293 Jo 0 g
. . 1 1 /% 3 1/Buin 2,~0?/02, B
Sign of w? depends on sign of numerator ns/sze/o wdo | dAZ/w ENRAA:
. . T — :__/00 d_l / 3 /1/Bm1n dAB, -
Which only depends on the sign of w @, A LJ, o) rlele

1 1/ 2 [ —?2/2 13
—|4>|/ # /e
B2 3 2,
o dl
_ 2"
—/_oo|¢| =S
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TEMs in different stellarators

W7-X HSX




Trapped particles experience different curvature

Wendelstein 7-X
/" Magnetic field strength B

- pr ‘) Location of trapped particles \ /

e \\\ Curvature k ///’\\
£ o

"ﬁ) Location of strong curvature : ) |

wg.wl, < 0 for majority of electrons o /

nearly quasi-isodynamic, and maximum-J



w[cy/a]

Ylcg/a]

Trapped-electron

modes (Vn —driven) - linear

Linear simulations with GENE with a/L,=3

In W7-X:

generally small growth rates, mostly iTEM

In W7-X: typical TEM (or are they?)
(negative w) only at smallest k

Electron-driven TEM indeed weak in W7-X




Trapped-electron modes (Vn —driven) - nonlinear

1000 ¢
100 |
a1]
O
g
<}
0.1

10

W7-X —e—
HSX —a—
DII-D —m—

a/L

&~ F

In nonlinear simulations:
W7-X has indeed low heat flux (even with
surface-to-volume corrected)

Note: HSX heat flux also low
(c.f. high linear growth rates)

v[cs/a]

©o0000000

.

O—=NWhArOIOONO
T T T T 1

OI.5 1 1I.5 2 2I.5 3 3I.5 4 45
KyPs
Powerful saturation mechanism?

44



More fancy ways to do the TPM calculation (and go to more
arbitrary frequency orderings)

Not ignore the resonance, i.e. not order w,; small

+  Obtain the same criterioin for TPMs to be stable: Wy, < 0
« But it’s still only for Wiei K W K Wy K Wy,

nTa

OR: go bold and super general with the solutions for g, Y ¢.,(1) = 4 bafa0 <w—wz:a> N a l/ ¢Jocos M(t,1,1)

|U|||

Z ZéafaO w—wl, Iy dl/(P
Sat = T, sin(M(w,l1,12)) Ji, |v|||

AE x cos (M(w,l4,1})) cos (M(w, 1y, 15))
And define an energy transfer rate A7 & /d/\w*ewde

Energy transfer from electrons to instability So if all electrons satisfy @wg,w!, < 0
taking (AE/At > 0) or —> all electrons draw energy from the mode
giving (AE/At < 0) ? —> no electron-driven TEMs can exist!
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Conclusions and note of warning

One can derive dispersion relations for ITGs and TEMs and learn quite a bit about stability properties
and dependence on the geometry from those

Common tricks are related to limiting yourself to distinct frequency ranges, which allows
» kicking out terms of the GK equation because they’re small or averaging them out

» Ordering the drift frequency small

Generally:

* negative (“bad”) curvature is ... bad.

* Overlap between bad curvature and magnetic minima is bad

* Quasi-isodynamic configurations (W7-X approaches it) are great for TEMs

Can use these learnings for optimisation! A lot of work going on at the moment
But: still a lot to do:

Zoo of other instabilities (Kinetic ballooning modes (EM), Microtearing modes (MTM),
universal instabilities (Ul)....

The linear results are only half the truth — need to understand saturation physics as well
- nonlinear simulations are a safe bet CUE: Rogerio tomorrow ©
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