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Artificial intelligence 1s the science and engineering of making

computers behave in ways that, until recently, we thought required
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Building Blocks

Models, Data, Compute, Training



D

July 31, 2025

When you hear the term deep learning, just
think of a large deep neural net. Deep refers to
the number of layers typically and so this is kind
of the popular term that’s been adopted in the
press. | think of them as deep neural networks
generally.

Jeff Dean, Google Senior Fellow in the Systems &
Infrastructure Group

R. Michael Churchill, GSS 2025



Building blocks: model layer equations

Layer equation Fully-connected  Nonlinear activation

Neural Network functions
Wx b)
I

= O' W Sigmoid
o(z) = tre==
Layer nput — tanh '
output ] tanh(z) I
Nonlinear Welghts/ '

activation biases ReLU
max(0, x)

y 2 N
X<E L=l o0 oL-L.
|
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Mehta, V., et. al. (2020). http://arxiv.org/abs/2006.12682
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Layer2
Layer N

Leaky ReLU ’
max(0.1z, z)

Maxout
max(wf'z + by, wi x + by)

ELU ’
T z>0
afe®—-1) z<0 - ~ o




Why go deep?
Learn hierarchical, composable features

Deep. Learning =,Learning Hierarchical Representations
i

Important that these
features are learned

# It's deep if it has more than one stage of non-linear feature transformation joint/y, i.e. can not train
_ ; . layers separately and
Low-Level ) Mid-Level L ngh-Level_’ Trainable L get the same result
Feature Feature Feature Classifier
4 A A

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Features, representations, latent space

Final Representation Layer

&

One way to view deep NN is that =

they learn “features” or |
“representations”, with a final ., ‘o U
layer for classification or S AN

AN, l)‘(r

A
'\.'.':,
(e I

W

regression

The feature space also often
referred to as the latent space;
data compressed to a space

. . https://towardsdatascience.com/overparameterized-but-
which latent random variables generalized-neural-network-420fe646¢c54¢
define




Building blocks: data

Image Label

Due to large number of parameters, deep neural

networks are data hungry. Cat

How much data do you need for your problem?

Answer is always “it depends” (complexity of the problem,
size of the network, etc.), but more is (almost) always better

Cat

Rule of thumb ~5k examples per category for classification WIS H
\. ‘ Dog

Typical “supervised learning” setup involves gathering
input data and the targeted output data (e.g. input:

pictures of cats/dogs; output: label for each picture " 'l» Dog
whether cat/dog) ~at.




Building blocks: Loss function for
gradient-based optimization

Goal of NN training is to minimize the loss function for the dataset

fala) = O (70 (F42 ( (42 (19 @)

NN Target
output lioutput
(1
Loss 5 ( fe MSE loss

function

(fo(z),y) =< — Z y; log fo(x) Cross-entropy loss

NN weight Learning rate
update Y.
0« 0—n-;
T96
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Stochastic Gradient Descent (SGD)

1 <= O fo(z:), v
L . 06— Jo(z:), y:)

Performs optimization steps using B 3 00
pa rt (OI’ ”batChES") Of dataset for Stochastic Qradient Descent Gradient Descent
gradient (instead of entire dataset) N~ =

“stochastic” because random samples

used in mini-batches n = Npatch Be= N

Spend more time processing more (Nbateh < N)

data instead of minimizing Variants most commonly used:

optimization steps
P P SGD with momentum

Faster convergence

Adam

“the best optimization algorithms are
not necessarily the best learning
algorithms” [Bottou, NeurlPS 2007]




Building blocks: Compute with GPUs

Specifically CUDA parallel programming model made it
easy to leverage GPUs for parallel processing,
accelerating the tensor operations needed in neural
networks

NVIDIA.
CUDA

Many frameworks exist to implement deep neural

networks; all make it seamless to leverage GPUs (no O PyTQ rCh
CUDA programming required) Eé"

Key for fastest performance is pipelining the workflow to _mf*%(x
ensure GPUs don’t sit idle

e.g. load next data batch using CPUs concurrent with GPU TensorFlow

operations on other batch of data with pin_memory in Pytorch
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Inductive bias

“Encode our knowledge and assumptions about the world”



- - 5irerirhpiB - RIRH ' N
Weight Agnostic Neural Networks

ADAM GAIER  DAVID HA June 12 Download NeurlPS 2019
Google Brain  Google Brain 2019 PDF Slides

* Instead of updating weights,
modify structure of neural
network

* Showed that with the right
structure, learning was
possible, despite single
parameter weight

¢ )
leg2"%0
hipi

“Not all neural network architectures are created equal, some perform much
better than others for certain tasks. But how important are the weight
parameters of a neural network compared to its architecture?”

6 ) July 31, 2025 R. Michael Churchill, GSS 2025 . 14
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Convolutional structure in neural networks a strong inductive

bias for locality

Layer equation
y =c(Wx + b)

CNN weight matrix sparse connectivity
enforces translation invariance, useful for
natural images. But also cons, e.g. one con
is the "Picasso effect”, default CNNs can’t
distinguish global and relative relationships

“Face” “Face”

R

[ [

S
\E”/ /! \\\ - //

O)

— |

<O (

W
Fully-connected [EJ
Neural Network

Conv. Module #1

Convolutional
Neural Network

Conv. Module #2 Classification

~

output: cat? (y/n)

conv2d maxpool conv2d maxpool fully fully
Input +ReLU +ReLU connected  connected



Architecture choices have dramatic effect on loss
landscape -> ease of training

RLOAEAS SIS a+*a
No Residual connections With Residual connections
@ July 31, 2025 R. Michael Churchill, GSS 2025 16

Li, H., et. al.(2018). https://arxiv.org/pdf/1712.09913.pdf




Neural network architecture can incorporate
different levels of physics

Many NN architectures offer enhancements in terms of learning capacity,
and ability to follow the operator manifold

Gge capacity, little physb

E.g. EfficientNet, ViT

Large capacity with
sufficient data can learn
very general functions, but
unclear if can reach the
numerical precision levels

Qeral physics incorporati}

/ Operator learning \

E.g. Hamiltonian NN,
Equivariant NN

NN with physics
symmetries inherent
promise to stay closer to
operator manifold, but

E.g. FNO, DeepOnet

Specialized neural network
structure in principle allows
learning the general
collision operator, data
efficient,

QPDE solving /

incorporating multiple
symmetries challenging

< 4

Wrresremreser SO |



Architectures and
Techniques Related to
Scientific
Deep Neural Networks

comont modeter Il Papers With Code

https://paperswithcode.com/



Sequential Models



Sequential models:
Transformer

Decoding time step: 1@3 456 OUTPUT |

f

s

Kencdec Vencdec C
Oorm OOm  Oom

Linear + Softmax

EERREES

T

)
DECODERS ]
)

ENCODERS
B
EMBEDDING t t [} 7Y
WITH TIME | [ LLIEIC]] EEEE
SIGNAL
EMBEDDINGS [T e
e suis étudiant PREVIOUS I
meuT . OUTPUTS

A Transformer is a model architecture that eschews recurrence and instead relies entirely on an

attention mechanism to draw global dependencies between input and output. Before Transformers,

the dominant sequence transduction models were based on complex recurrent or convolutional

neural networks that include an encoder and a decoder. The Transformer also employs an encoder

and decoder, but removing recurrence in favor of attention mechanisms allows for significantly more

parallelization than methods like RNNs and CNNs.
@ July 31, 2025

R. Michael Churchill, GSS 2025
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Sequential models:
Transformer cont., the attention mechanism

1) This is our 2) We embed 3) Splitinto 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W° to Layer: [ 5 e’l Attention: lWl
R with weight matrices ~ Q/K/V matrices produce the output of the layer ‘ = -—l,:f—
@ m—— B
X wee T EE i
Thinking T o Wo " Qo ! animal_ animal_
Machines B Wo == Ko didn_ didn_
— I Vo . :
NN A L
t t
W;Q Cross_ cross_
* In all encoders other than #0, WK Q4 v the_ the_
we don't need embedding. W,V ‘ K1 street_ street
We start directly with the output V4 HHH = il
of the encoder right below this one ecause_ b_ ecause_
it_ it
- was_ was_
W-Q too_ too_
WK Q7 tire
d

7v == K7 '
T
e Vv EEH

Attention(Q, K, V) = softmax( @2 )V

v

R. Michael Churchill, GSS 2025
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Graph Neural Networks



Graph Neural Networks

GNNs operate on graph structures with Initiel “layer 0" embeddings are
T . equal to node features
nodes/edges il
k—1
Perform better with fewer layers h =@ | W« [ D |]l:;‘(v)| +Bkh§—1> , Vk > C
ion e

N non-linearity (e.g.,

Final ;
Bl U'er fanh] average of neighbor’s

previous layer embeddings

Savannah Thais, Graph Neural Networks

| 4

https://ericmijl.github.io/essays-on-data-science/machine-learning/graph-nets/
https://theaisummer.com/graph-convolutional-networks/
https://theaisummer.com/gnn-architectures/



https://ericmjl.github.io/essays-on-data-science/machine-learning/graph-nets/
https://theaisummer.com/graph-convolutional-networks/
https://theaisummer.com/gnn-architectures/

Graph Neural Networks for learning N-body
problems and dark matter is cosmology

Model with Extract to
Graph Neural Network Symbolic Equation

Dataset
]

A= - Predict Dynamics % k
N

Encourage Low-Dimensionality
Representation

C
- G = o7 > (1= ri)fy
t g

Known spring law

Simple Particles

Predict Properties Cy+ M;
)

B 1
) G=0+t Cy + C3M; ; Cs + Cﬁ(’f‘ij)c7

Unknown Dark Matter
overdensity equation

Detailed
Dark Matter Simulation

M. Cranmer, https://astroautomata.com/paper/symbolic-neural-nets/



Learning on complicated mesh structures

*  Encodes information from

mesh onto lower-dimensional

graph structure in order to

simplify the prediction process

* Some capability shown for
beginning with simple mesh

and transferring to larger mesh

@ July 31, 2025
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Learned one-step simulator

q;
Update

P

t+1

Encoder Processor
D

passing x L

Decoder .

Pfaff 2021

R. Michael Churchill, GSS 2025

Iterative
rollout

Cloth mesh nodes
Obstacle mesh nodes

Mesh-space edges M
World-space edges EW

M
Mesh-space messages € ij

World-space messages e'z/

Decoded accelerations P;

25




Ground truth

(with learned

ioy=1]

¥

AN

rollout

ing

We can learn to adapt the mesh dur


https://docs.google.com/file/d/1zFETkr3VbRZb3EYzMvypR1AtRUu-O3UZ/preview

PDE solving



Equivariant Neural Networks

Uniform Motion

Modeling PDEs such as Navier-Stokes can
be made more accurate by using NN
architecture which guarantee symmetries
of the underlying PDE are satisfied

Target ResNet Equym

Ex: Ocean data flow prediction enforcing X
Uniform Motion performs much better
over long time

t=10

Robin Walters, "Incorporating Symmetry into Deep Dynamics Models
for Improved Generalization." ICLR 2021.



Solving on coarse grain grids, leveraging

differentiable simulators

Hybrid approaches can use NN to target
specific parts of numerical PDE
algorithms (e.g. local operator for
convective fluxes)

Learn to replicate high-res simulations
on coarse, limited grid, inference on
fine, expanded grid

With a fully differentiable simulator, can
optimize end-to-end through multiple
steps of simulation. Help stability.

B

(@)

Old velocity

v(t)

Bu_ i 2 _l
Tk \% (u®u)+ReVu pr+f
V-u=0,

Training dataset Generalization tests

L.
v, 3 ~ ..
SR \ e

Larger domain Decaying  More turbulent

Forced turbulence
External forcing F\(¢)

Ve

Convective flux ®;;

%i; interpolation

Convolutional
neural network
Filter
constraints
Divergence
Explicit timestep
New velocity
v(t + At)

u;; interpolation

Pressure projection

xd?

Kochkov, PNAS 2021



Using trained neural networks allow gradient based
design optimization

Physical Design with Differentiable Learned Simulators

& Allen 2022


http://www.youtube.com/watch?v=UX8x2dIAgQw

Physics-informed Neural Network (PINN)

Originally designed to solve single BTy e, e :::(ut) w::mtem \
instance Of PDE Constrained Expression
Didn’t require many data solutions, | S| PR ~.
only evaluations at certain points B N TR T T

 ...but often traditional numerical | T z

solver would be faster | ' us(2,0) = i) '

Extensions modify to make more z .

generalizable: HNCEY soeic | )
Put BC/IC as inputs instead of loss ' e
Add some data examples to train
on

e Still, PINN most utility for inverse
,garameter extraction from PDE (not
forward solve)

ug(,t) = ap(z,t)




Learning operators instead of functions

- Replacing linear function with ™ Fra@®orm — URoRm 1 [Keomow
an integral operator enables ///// — Kte, 9
better generalization to unseen o [ ;/-_, s
coefficient —> Integral ® ® —>  solution
function operator function

data

* e.g. Fourier Neural Operator
(FNo) for fIUid fIOW’ 1000X Neural Network can a;?rlt;inf)tel{\;y continuous function

faster

Input: Layer 1:

. \ \ Feature —> Linear i
Vector function
\ H \ Anima Anandkumar, GTC2021

: Jury 5f 2UZ25 : R. Michael Churchill, GSS 2025 32
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“A Digital Twin is more than a 3D model or a simulation. It is an evolving, virtual
representation of an object or process that uses data from, and observations of, its
physical counterpart.”

Allows doing “what if?” analysis:
-Design optimization
-Operational optimization
-Predictive maintenance
-etc.

Machine learning for:

a. Surrogate model/accelerating
simulation

b. Connecting physical asset to digital
asset




Methodology Flow Diagram

Wingbox Rib Design Elements Manufacturing Loads Materials
+ Process time stamps « Strain sensor « Static failure Tr't """""""""""""""""""""""""""""""" &5&&;&'55"'0}:75&:}':
outputs tests Policy !
| I D€Ly CPexTe x Vi Time or stage i
d Yy dy Design information for all products :
7 Design Decisions Data Digital Thread |
o"é% o A Data from product lifecycle 9 | 9 Tools, methods, and processes ;
050 Uncertain input variables Statistics on uncertain inputs i
Yt ?{t Space of available Information L
| Uncertain Inputs !
uy D, Manufacturing Loads Materials b — Y ~ E
« Process time stamps + Running loads, « Strengths Probabilistic + Transition + Cost/Constraint H
High Level A [ Desiariand moments, and Models Gitirizatenrebi T E
« Design or Anf}llg/r;is | B lzgésesiorr?filti?ngn olving Solution Returning !
expenimeny Resources Multistage decision making ~———— FolicysHaloutpulsdeson ...}
(swilaval Bl Leads to Dita-divar desitn Which gives decisions as functions of the
L Distributions - 9 digital thread
+ Plyangle Design under uncertfainty gHeThreel
« Thickness %’ ‘ Fig. 5 Flow diagram of complete methodology.
+ Sensor placement
Fig. 3 Illustration of the four key elements of the design problem for the wingbox rib example.
Vi(D) = mm ]E[rt(Dta u,y) +rVi (@D, uy,d,)) Dy, ut]

. ) _ s.t. E[g,(Dy, u;,y,)|Dyu,] <0, t€{0, ..., T}, Vi, =0
Does one invest early in small-scale experiments to reduce the

uncertainties for a subset of the uncertain input variables? Or,
does one proceed to manufacturing and deployment to gain
revenue through sales and gather other sources of data including
specific manufacturing time stamps and operating conditions?

6 Whlen is one deC|5|on favored over the other and under what
céHéﬁﬁ%n%. R. Michael Churchlll GSS 2025 35

Singh, Wilcox 2021




Al based digital twins for engineering operations

Al models for accelerating HEAT code (divertor Al

heat flux modeling code), for fast comparison to
experimental conditions

— 1.0e+01

Based on low(er)-fidelity physics combined with
accurate 3d CAD geometries

Faster for generating training data, but

needs to be modified by experiment data.
Not clear if can adjust incorrect simulation Normal
with experiment sufficiently

Tension between low- and high-fidelity
for creation of digital twin (can
low-fidelity based be corrected?)

— 1.0e+01

D. Rivera 2024 Fus. Eng.



L
Coupling multiple fidelity codes for stellarator StellFoundry

Multi-fidelity Multi-physics

design Optimization and Verification design validation HPC simulations

* Design optimization traditionally
makes use of simplified metrics for
speed

* Direct optimization using
high-fidelity simulation when needed
can make more robust designs _

-+ Consistent plasma state from s
simulation by coupling multiple codes

* Leverage Al surrogates/differentiable

~ Advanced design
optimization

o‘ \ )
“SEEPEN

SciDAC-5 project

Optimizer

Objectives

Fueling:

. . N . . . ellets, etc. Neoclassical | fluxe
simulations for design optimization - M ey
External

* High-fidelity simulation for design heating - Rt

Fast-ion

RF, NBI

verification

@ July 31, 2025 R. Michael Churchill, GSS 2025 37



Accelerating stellarator integrated modeling and

optimization with Al/ML

Current integrated modeling of
stellarator transport dominated by
GPU-accelerated turbulence solver
(GX, 24 hrs total), even though

simplified physics

~24 hrs
(~2 hrs per iteration)

64 nodes
(256 GPUs)

temperature (keV)

KNOSOS

N === T;(exp)

—-= Te (exp)
\ -6- Ti(ae)
\ Ti (ke,ITG)
-1~ Te (ke,ITG)
—&— Ti(ke,ITG+ETG)
—6— Te (ke ITG+ETG)

~—

0.0 0.2 0.4 0.6 0.8 1.0

N. Mandell (PPPL, now Type One), T. Qian (PPPL) J. Sachdev
(PPPL)Bill Dorland (UMaryland, PPPL), M. Zarnstorff (PPPL)

O C Turbulence simulations
<5 O 1l
I
- KA V’“r

Regression

=>

Predicted heat flux Q/Qqs

103

https://arxiv.org/abs/2502.11657

Comparison

of Ensemble Predictions with Actual Values

102

10!

ol 1 4l
10991 %

R? =0.989

it il
Ed?

True heat flux Q/Qgs from GX

10° 10t 10? 10°

M. Landreman (UMaryland), C. De Magalhaes Alves, J. Choi, P. Balaprakash

(ORNL)

Al/ML surrogate model (CNN created by
DeepHyper) predicting turbulent heat flux from
magnetic geometry will accelerate 10-1000x

Ensemble for uncertainties, call out to full GX

model when errors large



Digital twin in Nala Steel Plant

FEM for thermal simulations of steel
plant transport torpedoes

Created reduced order models (ROM)
based on neural networks with ANSYS
Twin Builder

Utilized in a planning scenario similar
to reinforcement learning for planning
with the environment

state

config. torpedo fleei

St

tals

t R, g

digital twin

event, scenario

action

e,
\/Ts:;w—o




How can we best use Al for scientific discovery with
experiment?

This talk explores two frontiers:

1. Connecting Models & Reality: Using generative Al to rigorously
compare simulations with experimental data.

@ July 31, 2025 R. Michael Churchill, GSS 2025 40



Generative Al



Generative Al

Simplify life to two kinds of Al:

Predictive Al:

¢ Takes dataset of paired inputs {8} and output {x},
and learns p(x|0), i.e. how to predict e.g.
classification or regression for some output x

Generative Al:

*  Takes dataset of inputs {8}, possibly with output
pairs {x}, and learns entire data distribution
p(0,x), often conditioning on x so p(0]x), i.e. how
to generate a new input data sample given
(sometimes also called “probability density
estimators”)

”



Generative Al in industry

Significant advances in a short few years
using generative Al for:
Chatbots (e.g. ChatGPT)
Image generation (e.g. Midjourney,
ChatGPT,
Video generation (e.g. Veo3, Sora)
Protein (e.g. AlphaFold, RFDiffusion)
Novel materials (e.g. MatterGen) e R e
In common are Al architectures which
excel at learning complex data
distributions

7PNM

4 -
Ground truth shown in gray ;",;‘f S ,f‘\l\,“



https://docs.google.com/file/d/1Za1W6pdjqtmYR-JpD2yiR5BNfRmmKmzt/preview

Motivation: Utilize simulation for fast statistical
inference of physics parameters from experiment

Bayesian inference can extract
physics parameters from Physics
. . parameters
experiment data, but typically 5
explicitly specify likelihood p(x|8) (e.g. D, X)
Some simulators with randomness .
, o ) o Inferred physics
can’t explicitly define a likelihood parameters

Predicted
observables
X
(e.g.n,T)

Actual
experimental

0% observables
Traditional methods (e.g. MCMC) (e-g. D, X) x*
for statis:tical inf(.erence are ’ Bayes’ Thm (e.g.n,T)
sequential, require ~hours, don’t 0(81x) O p(x|8)p(0)

scale to number of experimental

L : ; How can we utilize simulators without explicit
pomts in fusion exper|ments

likelihoods, and ensure fast inference?



Simulation-based inference (a.k.a. likelihood-free
inference) using neural density estimator

Procedure to use:
Generate sample physics
parameters 6.~ p(6) from prior
Run through simulator (“forward
model”) to generate experimental
observations x. ~ Simulator(e)
Train neural network with dataset | :
{6, x}'s to learn conditional @QJ/L - s _
density, e.g. the posterior p(6|x) — oncalves, eLife 2020
Can train amortized model for generic experimental
targets (x), or sequentially update prior in rounds for
a specific instance of (x,)




Simulation-based inference (SBI) enables between-shot
extraction of physics parameters from experiment

Train normalizing-flow based Offline training with simulator

neural network to learn . e\ "

posterior from many simulation Y A (e '
>

Extract for example anomalous
transport coefficients from !
experiment, consistent with SOL
simulator (UEDGE)

Make routine and robust
experiment comparison to
simulation

Use in digital twins for robust|
aincertainties

Fast inference between experiment shot

exp

exp

C. Furia, R.M. Churchill, PPCF 2022



Normalizing Flows

Normalizing flows are a bijective (invertible) transformation
Allows transforming a known distribution p_(z) e.g. a Gaussian to a

more complicate one p,(x) fiR' >R suchthat x=f(z) and z= £ (x)

-1
pro) ' 0)oe| L, oo )
f1(2o) fi(z
,\ @ * log py (x)=log p, (z)—log|det (ZLJ

O
] A AF g 'f\ Chaining bijective transforms also leads to a
total bijective transform
2o ~ Po(o) 2 ~ Pl i < g i) For discrete number of layers, effectively
invertibility hard-coded into structure
Can be used for conditional density estimation
of posterior p(8]x)
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

L
’ e
/ \
1
I
1
\
\ A
\
N A
~ e



Simulation-based inference in gravitational-wave
observatories

Simulation-based inference (sbi) using normalizing flows
used to infer binary black hole merger GW150914,
successfully applied in other fields (e.g. gravitational
waves with LIGO, see Green, Mac. Learn Sci. Tech, 2021)

Use forward model IMRPhenomPv2 to generate gravitational
waveforms produced by quasi-circular, precessing binary black
hole systems, include realistic noise

= ROPERICI P Q| D } o =

1
= OFAON OO | B [>
D (P
- RGO O >

Inference parameters masses of black holes, spin magnitudes,
angles, inclination, distance to the system, time of coalescence,
and sky position.
Compared to MCMC method, showed good agreement

MCMC take days to weeks, SBI generates 5k samples per second



Example applying SBI to plasma physics

https://github.com/cfuria/ppcf_Ifi

mechanistic model

@i—%—% _ UEDGE, a simulator based on a fluid model for

scrape-off layer transport

" Physics parameters anomalous transport
O I coefficients representing turbulence, 6 = {D, ¥xe, Xi},
1D profiles vs @, . Prior is uniform distribution.

ter 2
probability

m

p

parameter 1

_ Generated toy problem “experiment” data, kinetic
ET_. profilesn , T, T.from a ground truth 6

ms

'a



Simulator: UEDGE

UEDGE is a fluid SOL code from LLNL, similar
to SOLPS

Most often fluid neutrals used
Utilizes ad-hoc inputs of anomalous

perpendicular transport:
D particle diffusion, X_ electron energy diffusion,
X, ion energy diffusion

Relatively fast on small grids, ~10 s using
pyUEDGE
Here used 18 x 10 grid

lon temperature

le—-17

1.6

1.4

- 1.2

- 1.0

- 0.8

- 0.6

0.4

0.2



Results for NPE

N =10,000 simulations total
120 hidden features, 10 transforms

Orange: Actual (0)
Dashed: SNPE maximum-a-posteriori

Solid: SNPE expected value (95% C.I., 10"5
samples)

Radial D Profile Radial x; Profile

14F \
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T. Khare, 2024, to be submitted

Simulation-based Inference for diagnostic interpretation

(1) Generate 1000’s synthetic LLAMA signals, with added noise &

( Simulator2:

n, T, T, A Synthetic

V/?RE) L g pinhole camera LLAMATL,,
(e.g. CHERAB)

(2) Train specially designed neural networks (e.g. normalizing flows) on the synthetic dataset to
learn the inverse mapping, extracting n, from LLAMA measurements including = T
uncertainties (posterior)

» Te n,|LLAMATL ,n,T,T w(R/Z o
{hr" M SEe—— pntAMAL T T RD)

(3) During operations, “inference” with neural network to extract o5 BB o» B ®
n,from LLAMA measurements is very fast (~ms - s) and run
locally, visualize between discharges n  over entire discharge

103

O
KEY"INSIGHT: NN can enable fast simulation to experiment comparison



High dimensional data poses difficulties for SBI
with discrete normalizing flows

Strength but also drawback of discrete normalizing o
flows is that the bijective nature is hardcoded in ]. = 0 c Rlzzs3
the model, requiring clever architecture choices ‘ BN
In practice, Jacobian between layers leads to input
dimension constraints to ~O(30) due to memory
and computation constraints
Example: Infer the 3-D density field of the early
universe B given observations x of the dark matter
distribution at low redshift, where both are 3-D on
a 1283 voxel grid [Legin, arxiv 2023]

 How to overcome the dimension limitations of

discrete normalizing flows?

(density early universe)

z € R1%¥
(density today)




Diffusion models

Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

i i ’%l
score function

dx = [£(x,1) — ¢* (1)Vx logpi (x)] dt + g(t)dw

Reverse SDE (noise — data)

Learn score function, use Langevin dynamics to generate new
samples. Overcomes need to have Jacobian calc at each layer, allows | vl P
using wide variety of architectures (usually UNet, Transformers) Y. Song, 2021
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Flow matching similar to diffusion, but learns deterministic
flow field, “simulation-free” (a.k.a no ODE solve)

- .“ . Flow Matching

~ Diffusion

dx = f(x, t)dt + g(t)dw

L3

-
-
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https://docs.google.com/file/d/19msvMnTjoEAadtk4IgLvZ8mijrXnNYMC/preview

Score-based models in simulation-based inference

(SBI)

Score-based diffusion models learn the exact

[Geffner 2022]
Applied to inference of 1283 3-D density field atdiffusion
beginning of universe [Legin 2023] (though
synthetic sanity check, no real observation
used), used 2,000 (1 Gpc/h)® dark matter
N-body simulations

flow

True ~
likelihood, and therefore can be used in SBI

T. Geffner, arxiv 2022

Score-based .

S A
@ -
2

Discrete g
=z 0
normalizing= , =

pOIx9) p(OIxS, X3) P(OIxE, X3, x3) POIxE, X3, x5, X3) PLOIXE, X3, x5, x4, x8)
e i e
o . _':-’
0 2 0
Inferred z = 127

R. Legin, arxiv 2023



Digital twin extension to SBI based on diffusion/flow
matchi Ng Rotu arxiv 2024

Digital twin is a “hybrid” data+sim model,
supplementing modsim with physical device data for
better predictive capabilities [NASEM 2024]
Diffusion/flow matching very flexible models, with
steering capability due to semantic concept learning
Can be applied in a similar way to update models in B wR 4

digital twin manner
* Potentially sacrifice some extrapolation capability to new
devices for gains in predictive capability for current (control,
planning, etc.)




How can we best use Al for scientific discovery with
experiment?

2. Automating the Workflow: Using agentic Al to assist in the process of
research itself.
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Automating discovery process

Berkeley A*lab fully automated robotic
laboratory for materials discovery,
connected with active learning and LLM
to suggest novel materials and synthesis

autonomously

Initial claim of 41 novel compounds

synthesized

However, heavily disputed in the community
on novelty of materials

Cautionary tale on agentic Al driving
discovery. Can these tools truly discover

novelty?

@

Computations Text mining

Robetic synthesis

Materials Project DeepMind

-;?’
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Szymanski, Nature 2023



LLMs expanding from chatbots to include reasoning,
agentic capabilities for research and code

ChatGPT o4-mini-high v

Explain vialetto "monte carlo flux"

Thought for 16 seconds >

The Monte Carlo Flux (MCF) method, as developed and modified by Luca Vialetto and collaborators, is a
hybrid stochastic-deterministic approach for solving the electron transport problem in gases—particularly
tailored to obtain accurate electron velocity distribution functions (EVDFs) without the heavy
computational cost of full-scale Monte Carlo simulations. Traditional approaches to electron transport

typically fall into two categories:

. Boltzmann solvers (two-term or multi-term): These solve the Boltzmann transport equation for
electrons by expanding the EVDF in spherical harmonics (or Legendre polynomials) and truncating at
a finite order. While multi-term solvers capture anisotropy better than two-term, both rely on
assumptions about how collisions redistribute electron momentum and often require approximations
in the collision integrals. At moderate-to-high reduced electric fields E/N (electric field strength per
unit gas density), deviations from two-term solutions can exceed 50-70 % due to non-negligible

anisotropy in the EVDF researchtuen  pubiations aobrs .

Lo

Full Monte Carlo (MC) simulations: These track individual electrons through successive collisions
and fields by sampling scattering events according to cross sections. Although MC simulations are
formally exact (subject to cross-section quality), obtaining converged EVDFs—especially in regions of
phase space with low probability—can require simulating billions of particle histories, leading to

impractically long runtimes (e.g., days on a single CPU) for complex gas mixtures swivars  gifferal .

The core idea of the Monte Carlo Flux method is to exploit variance-reduction techniques so as to capture

the detailed EVDF in an efficient way. Vialetto's MCT j, yorithm proceeds in two main stages:

ALGXpy X

@ Search Q Deep research
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® Technical Overvi

NASA's Magnetospheric Multiscale (MMS)
Mission — Technical Overview

v of MMS Mission for Simulation Comparison

1.MMS Mission Goals and Science Focus

MMS is a NASA mission launched in March 2015 to investigate the fundamental physics of magnetic
reconnection in Earth's magnetosphere envisedscrs . Magnetic reconnection i a process where magnetic
field lines break and rejoin, rapidly converting magnetic energy into particle energy - a key driver of space
weather phenomena (e.g. aurorae) and relevant even to laboratory fusion plasmas ersisesiss . MMS
targets the “microphysics” of reconnection eisescs | meaning it measures plasma and fields at very

small scales (down to the electron and faster-th: time resolution) to resolve how
charged particles are accelerated and magnetic topology changes in the electron diffusion region (EDR)

where reconnection occurs incsrmsereen . The primary science regions are two known reconnection sites

in Earth's magnetosphere: (1) the dayside magnetopause, where the solar wind's interplanetary field
merges with Earth's field, and (2) the nightside magnetotail, where energy stored in the tail is explosively
released during substorms massssceswiess . By focusing on these regions, MMS addresses how magnetic
reconnection operates under different conditions ~ asymmetric reconnection at the dayside

magnetopause (plasma density and field strength differ across the boundary) versus symmetric

reconnection in the magnetotail plasma sheet (similar plasmas on both sides)

ipcom  inkspringercom .

Beyond reconnection, MMS also contributes to u ing energetic particle acceleration and plasma

turbulence in space plasmas euksesaors . The mission builds on prior multispacecraft missions (e.g.
ESA's Cluster) but with far higher temporal and spatial resolution, enabling the first direct probing of

electron-scale dynamics evipedors . T
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DOE Al-jam session: a tale of two cities

D O E h e I d a 1 OOO SC i e ntist ja m Sess i O n at n at i O n a I 9 Accelerating Scientific Discovery with Al: 1,000 Scientist Al Jam Virtual ... (Y lad

Watch later ~ Share

lab sites in Feb 2025 ACCELERATING

OpenAl provided access to newest (at the time) Al SCIENTIFIC DISCOVERY
reasoning models: 03, o4-mini-high, and agentic Deep WITH Al

Research 1,000 Scientist Al Jam Virtual Conversation
Scientist brought their problems to probe advanced Al

reasoning models on scientific problems important to DOE o
For certain classes of problems, it was the best of ‘ @ ¢ ke
ti m es A toroidal plasma with a pressure gradient in the

radial direction and a parallel electric field E_parallel
will relax via Coulomb collisions. In this problem,

SPEAKER!

PY _ o .
AI mOdels ScorEd an A on PhD quallfylng exam for consider the associated "neoclassical” transport in
. . . . the long mean-free-path “banana regime,” and
) ) . ) In the long mean-free-path “banana regime" of neoclassical transport, the flux of
plasma phVSICS StUdents in the Prlnceton AStrophVSIcs ignore, for simplicity, any temperature gradients. trapped particles is driven by both the radial pressure gradient and the parallel
electric field E/|. The key steps to estimate the trapped-particle flux involve using
department I -~ | . o oo o et e

- oo " " . trapped particles.
driving forces? Specifically, provide a simplified

FO r Ot h e r C I a Sses Of p ro b I e m S) it Wa S t h e WO rSt Of (heuristic) derivation of the coefficients for the 1. Conservation of Canonical Angular Momentum

. pressure gradient (-Te * dn/dr) and -n*E_parallel For a toroidal plasma, the canonical angular momentum P of a particle in the
t I l I I e S driving forces. Use the conservation of canonical presence of a toroidal magnetic field B and a poloidal magnetic field By is:
angular momentum to estimate the inward radial Py =mRoy +av

Al models struggled with open-ended problems requiring veiociy of the trapped particies.
high degree of creativity (not necessarily knowledge)



Updating models for specific capabilities such as

reasoning, tool use, etc.

Increasing capabilities of LLMs have
come with larger trained base
models AND post-training updates
Reinforcement Learning with
Verifiable Rewards (RLVR) and
similar techniques enabling
reasoning capability on domains
with deterministic, verifiable
objectives (math, coding)

But RL is usually sample
hungry, and difficult to build up
posttraining datasets necessary
for specific skills

C\

Curate prompts

*@ﬂ public datasets

Supervised finetuning  Direct pref. optimization ~ RLwith verifiable rewards
l persona-driven
synthetlc instructions

l i l on-policy data l prompts with
2= datambing [@ED] off-policy data verifiable rewards
@ decontaminate

Talu3-SFT Talu3-DPO Talu3
i knowledge @}‘ reasoning 9@ math

@@ unseenevals

N. Lambert 2025

@ chat

. N) N) O
\ coding ' safety

Q development evals
Build evaluation suite
Identify core skills




C’} Scientist / Engineer
l! h ; o Initial program
| a EV O I V e EnEt el Silalee Cit g Evaluation code with co?npgnents
and configuration or custom LLMs ek

child_program = apply_diff(parent_program, diff)
results = .execute(child_program)
database.add(child_program, results)

in 4 x 4 matrix multiply, datacenter
“While AlphaEvolve is currently being
applied across math and computing, its
general nature means it can be applied to
any problem whose solution can be
described as an algorithm, and
automatically verified.”
Searches space of programs much more
intelligently, enables novel discovery

- & B
AI agents Coupled Wlth Google LLM Prompt sampler E LLMs ensemble | Program databasei Best program
(Gemini) and evolutionary algorithms to = R ! I
. ! Distributed Controller Loop i
generate novel algorlthms i porent_?rogrom, inspirotior}s = datobcse.sampleg) ) ) %
Found algorithm to reduce number of operations e 1 lmaem e el



https://docs.google.com/file/d/1NWPrMlHwoOsTe9pKEpDMSAfKPCWooxRp/preview

How to leverage these capabilities?

First, AlphaEvolve not open (yet) but there is Sign
Up list (sign up!)

Many more tools from different vendors will be
available (e.g. Microsoft Discovery recently
released)

Key need is defining correctly reward signal from

fuzzy real-world reward functions
* Domain scientist in a natural position to do

Connecting strong reasoning Al with our tools of
HPC simulation and experimental facilities can
accelerate science discovery

&

Strong
reasoning Al

Adopted from B. Spears

-

o )
&
Models

Frontier science Al
models for critical tasks
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Mined and newly
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L

Compute

Powerful Al training and

inference engine

/
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prediction

A
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Conclusion

“The proliferation of Al tools in science risks introducing a phase of scientific enquiry in
which we produce more but understand less.” - Messeri, Nature 2024

“Those who trust Al tools to overcome their own cognitive limitations become
susceptible to illusions of understanding” - Messeri Nature 2024

Al tools offer the promise of aiding researchers in multiple science fields to improve the
process of scientific discovery

Using Al with simulation-based inference to broadly compare and verify mechanistic
simulation with experiment can greatly expand our ability to discover regions of
mismatch, point to areas to improve -> code validation accelerated

Future looking capabilities of agentic Al semi-automating discovery is closer, need
domain scientist to engage in rewards signals, connecting tools, and human-in-the-loop
for finding novelty
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Basic fully-connected networks for profile transport

*  Sometimes all you need (throw a
neural network at it), especially when
scalar inputs/outputs desired or
possible

* If you can reduce what the ML model
needs to predict, try first

*  When higher-fidelity needed, go
a little further...
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Backpropagation: the learning algorithm 60 o_n
00

Backpropagation uses chain rule to 6= {Ww®,p®, W b}
determine how weights should 20 — kR k=1 | k)
change given an output loss.

Propagate error backwards, o ot [y(k—l)]T

calculating weight updates OW® - 92

Most deep learning frameworks use _9¢ _ _9¢

autodifferentiation to accurately oblk) — 92(h)

calculate gradients, no need to or [W(k)]T L & o k=11 (51
specify by hand 0zk—1) 0z*)

Rumelhart, “Learning representations by back-propagating errors”, Nature 1986



