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Artificial intelligence is the science and engineering of  making 
computers behave in ways that, until recently, we thought required 
human intelligence – Andrew Moore, Forbes Magazine 2017
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Models, Data, Compute, Training

Building Blocks
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Fully-connected 
Neural Network

Building blocks: model layer equations
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Why go deep? 
Learn hierarchical, composable features

6

Important that these 
features are learned 
jointly, i.e. can not train 
layers separately and 
get the same result
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Features, representations, latent space

• One way to view deep NN is that 
they learn “features” or 
“representations”, with a final 
layer for classification or 
regression

• The feature space also often 
referred to as the latent space; 
data compressed to a space 
which latent random variables 
define

7

https://towardsdatascience.com/overparameterized-but-
generalized-neural-network-420fe646c54c
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Building blocks: data 

• Due to large number of parameters, deep neural 
networks are data hungry. 

• How much data do you need for your problem?
• Answer is always “it depends” (complexity of the problem, 

size of the network, etc.), but more is (almost) always better

• Rule of thumb ~5k examples per category for classification

• Typical “supervised learning” setup involves gathering 
input data and the targeted output data (e.g. input: 
pictures of cats/dogs; output: label for each picture 
whether cat/dog)

8
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Building blocks: Loss function for 
      gradient-based optimization

9

NN 
output

Target 
output

Loss 
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Goal of NN training is to minimize the loss function for the dataset

NN weight 
update

Learning rate
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Stochastic Gradient Descent (SGD)

• Performs optimization steps using 
part (or “batches”) of dataset for 
gradient (instead of entire dataset)

• “stochastic” because random samples 
used in mini-batches

• Spend more time processing more 
data instead of minimizing 
optimization steps

• “the best optimization algorithms are 
not necessarily the best learning 
algorithms” [Bottou, NeurIPS 2007]

10

• Variants most commonly used:
• SGD with momentum 

• Faster convergence

• Adam
• Easy default hyperparameters
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Building blocks: Compute with GPUs 

• Specifically CUDA parallel programming model made it 
easy to leverage GPUs for parallel processing, 
accelerating the tensor operations needed in neural 
networks

• Many frameworks exist to implement  deep neural 
networks; all make it seamless to leverage GPUs (no 
CUDA programming required)

• Key for fastest performance is pipelining the workflow to 
ensure GPUs don’t sit idle

• e.g. load next data batch using CPUs concurrent with GPU 
operations on other batch of data with pin_memory in Pytorch

11
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The biggest lesson that can be read from 70 years of AI 

research is that general methods that leverage 
computation are ultimately the most 
effective, and by a large margin. …Seeking an 

improvement that makes a difference in the shorter term, 
researchers seek to leverage their human knowledge of the 
domain, but the only thing that matters in the long run is 
the leveraging of computation... the human-knowledge 
approach tends to complicate methods in ways that make 
them less suited to taking advantage of general methods 
leveraging computation. 

-Richard Sutton “The Bitter Lesson”, 2019

12
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“Encode our knowledge and assumptions about the world”

Inductive bias
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• Instead of updating weights, 
modify structure of neural 
network

• Showed that with the right 
structure, learning was 
possible, despite single 
parameter weight

14

“Not all neural network architectures are created equal, some perform much 
better than others for certain tasks. But how important are the weight 
parameters of a neural network compared to its architecture?”

https://arxiv.org/abs/1906.04358
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Fully-connected 
Neural Network

Convolutional structure in neural networks a strong inductive 
bias for locality

15

Convolutional 
Neural Network

WLayer equation

CNN weight matrix sparse connectivity 
enforces translation invariance, useful for 
natural images. But also cons, e.g. one con 
is the ”Picasso effect”, default CNNs can’t 
distinguish global and relative relationships
 

“Face” “Face”



July 31, 2025 R. Michael Churchill, GSS 2025

Architecture choices have dramatic effect on loss 
landscape -> ease of training

16

Li, H., et. al.(2018). https://arxiv.org/pdf/1712.09913.pdf

With Residual connectionsNo Residual connections
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Neural network architecture can incorporate 
different levels of physics

• Many NN architectures offer enhancements in terms of learning capacity, 
and ability to follow the operator manifold

17

Large capacity, little physics General physics incorporation
Operator learning

E.g. EfficientNet, ViT

Large capacity with 
sufficient data can learn 
very general functions, but 
unclear if can reach the 
numerical precision levels 
for PDE solving

E.g. Hamiltonian NN , 
Equivariant NN

NN with physics 
symmetries inherent 
promise to stay closer to 
operator manifold, but 
incorporating multiple 
symmetries challenging

E.g. FNO, DeepOnet

Specialized neural network 
structure in principle allows 
learning the general 
collision operator, data 
efficient, 

Larger models/more data

More inductive bias/less data
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Architectures and 
Techniques Related to 

Scientific 
Deep Neural Networks

https://paperswithcode.com/

Resource for exploring 
current models:
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Sequential Models
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Sequential models:
Transformer

20
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Sequential models:
Transformer cont., the attention mechanism

• transformer

21
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Graph Neural Networks



July 31, 2025 R. Michael Churchill, GSS 2025

Graph Neural Networks

• GNNs operate on graph structures with 
nodes/edges

• Perform better with fewer layers

23

https://ericmjl.github.io/essays-on-data-science/machine-learning/graph-nets/
https://theaisummer.com/graph-convolutional-networks/
https://theaisummer.com/gnn-architectures/

Savannah Thais, Graph Neural Networks

https://ericmjl.github.io/essays-on-data-science/machine-learning/graph-nets/
https://theaisummer.com/graph-convolutional-networks/
https://theaisummer.com/gnn-architectures/
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Graph Neural Networks for learning N-body 
problems and dark matter is cosmology

24

M. Cranmer, https://astroautomata.com/paper/symbolic-neural-nets/
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Learning on complicated mesh structures

• Encodes information from 
mesh onto lower-dimensional 
graph structure in order to 
simplify the prediction process

• Some capability shown for 
beginning with simple mesh 
and transferring to larger mesh

25

Pfaff 2021
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https://docs.google.com/file/d/1zFETkr3VbRZb3EYzMvypR1AtRUu-O3UZ/preview
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PDE solving
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Equivariant Neural Networks

• Modeling PDEs such as Navier-Stokes can 
be made more accurate by using NN 
architecture which guarantee symmetries 
of the underlying PDE are satisfied

• Ex: Ocean data flow prediction enforcing 
Uniform Motion performs much better 
over long time

28

Robin Walters, "Incorporating Symmetry into Deep Dynamics Models 
for Improved Generalization." ICLR 2021.
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Solving on coarse grain grids, leveraging 
differentiable simulators

• Hybrid approaches can use NN to target 
specific parts of numerical PDE 
algorithms (e.g. local operator for 
convective fluxes)

• Learn to replicate high-res simulations 
on coarse, limited grid, inference on 
fine, expanded grid

• With a fully differentiable simulator, can 
optimize end-to-end through multiple 
steps of simulation. Help stability.

29

Kochkov, PNAS 2021
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Using trained neural networks allow gradient based 
design optimization

30Allen 2022

http://www.youtube.com/watch?v=UX8x2dIAgQw
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Physics-informed Neural Network (PINN)

• Originally designed to solve single 
instance of PDE

• Didn’t require many data solutions, 
only evaluations at certain points

• …but often traditional numerical 
solver would be faster

• Extensions modify to make more 
generalizable:

• Put BC/IC as inputs instead of loss
• Add some data examples to train 

on
• Still, PINN most utility for inverse 

parameter extraction from PDE (not 
forward solve)

31
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Learning operators instead of functions

• Replacing linear function with 
an integral operator enables 
better generalization to unseen 
data

• e.g. Fourier Neural Operator 
(FNO) for fluid flow, 1000x 
faster

32

Anima Anandkumar, GTC2021
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“A Digital Twin is more than a 3D model or a simulation. It is an evolving, virtual 
representation of an object or process that uses data from, and observations of, its 
physical counterpart.”

Allows doing “what if?” analysis:

-Design optimization

-Operational optimization

-Predictive maintenance

-etc.

34

Machine learning for:
a. Surrogate model/accelerating 

simulation
b. Connecting physical asset to digital 

asset
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Singh, Wilcox 2021

Does one invest early in small-scale experiments to reduce the 
uncertainties for a subset of the uncertain input variables? Or, 
does one proceed to manufacturing and deployment to gain 
revenue through sales and gather other sources of data including 
specific manufacturing time stamps and operating conditions? 
When is one decision favored over the other and under what 
conditions?
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AI based digital twins for engineering operations 

• AI models for accelerating HEAT code (divertor 
heat flux modeling code), for fast comparison to 
experimental conditions

• Based on low(er)-fidelity physics combined with 
accurate 3d CAD geometries

• Faster for generating training data, but 
needs to be modified by experiment data. 
Not clear if can adjust incorrect simulation 
with experiment sufficiently

• Tension between low- and high-fidelity 
for creation of digital twin (can 
low-fidelity based be corrected?)

36

AI

Normal

D. Rivera 2024 Fus. Eng.
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Coupling multiple fidelity codes for stellarator 
design optimization and verification

• Design optimization traditionally 
makes use of simplified metrics for 
speed

• Direct optimization using 
high-fidelity simulation when needed 
can make more robust designs

• Consistent plasma state from 
simulation by coupling multiple codes

• Leverage AI surrogates/differentiable 
simulations for design optimization

• High-fidelity simulation for design 
verification

37

SciDAC-5 project
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Accelerating stellarator integrated modeling and 
optimization with AI/ML

• Current integrated modeling of 
stellarator transport dominated by 
GPU-accelerated turbulence solver 
(GX, 24 hrs total), even though 
simplified physics

38

M. Landreman (UMaryland), C. De Magalhaes Alves, J. Choi, P. Balaprakash 
(ORNL)

N. Mandell (PPPL, now Type One), T. Qian (PPPL),  J. Sachdev 
(PPPL), Bill Dorland (UMaryland, PPPL), M. Zarnstorff (PPPL)

• AI/ML surrogate model (CNN created by 
DeepHyper) predicting turbulent heat flux from 
magnetic geometry will accelerate 10-1000x

• Ensemble for uncertainties, call out to full GX 
model when errors large

https://arxiv.org/abs/2502.11657
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Digital twin in Nala Steel Plant

• FEM for thermal simulations of steel 
plant transport torpedoes

• Created reduced order models (ROM) 
based on neural networks with ANSYS 
Twin Builder

• Utilized in a planning scenario similar 
to reinforcement learning for planning 
with the environment 

39
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How can we best use AI for scientific discovery with 
experiment?

This talk explores two frontiers:

1. Connecting Models & Reality: Using generative AI to rigorously 
compare simulations with experimental data.

2. Automating the Workflow: Using agentic AI to assist in the process of 
research itself.

40
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Generative AI
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Generative AI

• Simplify life to two kinds of AI:
• Predictive AI: 

• Takes dataset of paired inputs {θ} and output {x}, 
and learns p(x|θ), i.e. how to predict e.g. 
classification or regression for some output x

• Generative AI:
• Takes dataset of inputs {θ}, possibly with output 

pairs {x}, and learns entire data distribution 
p(θ,x), often conditioning on x so p(θ|x), i.e. how 
to generate a new input data sample given 
(sometimes also called “probability density 
estimators”) 

42

“dog”

“dog”
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Generative AI in industry 

• Significant advances in a short few years 
using generative AI for:

• Chatbots (e.g. ChatGPT)
• Image generation (e.g. Midjourney, 

ChatGPT, 
• Video generation (e.g. Veo3, Sora)
• Protein (e.g. AlphaFold, RFDiffusion)
• Novel materials (e.g. MatterGen)

• In common are AI architectures which 
excel at learning complex data 
distributions

43

https://docs.google.com/file/d/1Za1W6pdjqtmYR-JpD2yiR5BNfRmmKmzt/preview
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Motivation: Utilize simulation for fast statistical 
inference of physics parameters from experiment

• Bayesian inference can extract 
physics parameters from 
experiment data, but typically 
explicitly specify likelihood p(x|θ)

• Some simulators with randomness 
can’t explicitly define a likelihood

• Traditional methods (e.g. MCMC) 
for statistical inference are 
sequential, require ~hours, don’t 
scale to number of experimental 
points in fusion experiments

44

     Prediction

     Inference

Physics 
parameters

θ
(e.g. D, χ)

Forward model
p(x|θ)

Predicted 
observables

x
(e.g. n, T)

Inverse model
 p(θ|x)

Actual 
experimental 
observables

x*
(e.g. n, T)

Inferred physics 
parameters

θ*
(e.g. D, χ)

Bayes’ Thm

p(θ|x) ∝ p(x|θ)p(θ)

How can we utilize simulators without explicit 
likelihoods, and ensure fast inference?
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Simulation-based inference (a.k.a. likelihood-free 
inference) using neural density estimator

• Procedure to use:
• Generate sample physics 

parameters θ
i
 ~ p(θ) from prior

• Run through simulator (“forward 
model”) to generate experimental 
observations x

i
 ~ Simulator(θ

i
)

• Train neural network with dataset 
{θ

i
 , x

i
}’s to learn conditional 

density, e.g. the posterior p(θ|x)

45

Goncalves, eLife 2020

• Can train amortized model for generic experimental 
targets (x), or sequentially update prior in rounds for 
a specific instance of (x

0
)
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Simulation-based inference (SBI) enables between-shot 
extraction of physics parameters from experiment

• Train normalizing-flow based 
neural network to learn 
posterior from many simulation

• Extract for example anomalous 
transport coefficients from 
experiment, consistent with SOL 
simulator (UEDGE)

• Make routine and robust 
experiment comparison to 
simulation

• Use in digital twins for robust 
uncertainties

D, 𝛘 n, T

Offline training with simulator

Fast inference between experiment shot
p(D, 𝛘 | n,T)n

exp
, T

exp

C. Furia, R.M. Churchill, PPCF 2022
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Normalizing Flows

• Normalizing flows are a bijective (invertible) transformation
• Allows transforming a known distribution p

Z
(z) e.g. a Gaussian to a 

more complicate one p
X
(x)

47
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

• Chaining bijective transforms also leads to a 
total bijective transform

• For discrete number of layers, effectively 
invertibility hard-coded into structure

• Can be used for conditional density estimation 
of posterior p(θ|x)
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Simulation-based inference in gravitational-wave 
observatories

• Simulation-based inference (sbi) using normalizing flows 
used to infer binary black hole merger GW150914, 
successfully applied in other fields (e.g. gravitational 
waves with LIGO, see Green, Mac. Learn Sci. Tech, 2021)

• Use forward model IMRPhenomPv2 to generate gravitational 
waveforms produced by quasi-circular, precessing binary black 
hole systems, include realistic noise

• Inference parameters masses of black holes, spin magnitudes, 
angles, inclination, distance to the system, time of coalescence, 
and sky position.

• Compared to MCMC method, showed good agreement
• MCMC take days to weeks, SBI generates 5k samples per second

48
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Example applying SBI to plasma physics

UEDGE, a simulator based on a fluid model for 
scrape-off layer transport

49

Physics parameters anomalous transport 
coefficients representing turbulence, θ = {D, χe, χi}, 
1D profiles vs ψ

N
. Prior is uniform distribution. 

Generated toy problem “experiment” data, kinetic 
profiles n

e
, T

e
, T

i 
from a ground truth θ

0

https://github.com/cfuria/ppcf_lfi
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• UEDGE is a fluid SOL code from LLNL, similar 
to SOLPS

• Most often fluid neutrals used

• Utilizes ad-hoc inputs of anomalous 
perpendicular transport:

• D particle diffusion, χ
e
 electron energy diffusion, 

χ
i
 ion energy diffusion

• Relatively fast on small grids, ~10 s using 
pyUEDGE

• Here used 18 x 10 grid

Simulator: UEDGE

50



July 31, 2025 R. Michael Churchill, GSS 2025

Results for NPE  

51

N = 10,000 simulations total
120 hidden features, 10 transforms 

Orange: Actual (θ0)
Dashed: SNPE maximum-a-posteriori
Solid: SNPE expected value (95% C.I., 10^5 
samples)

χ
e
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LLAMA 
ILy⍺

Simulation-based Inference for diagnostic interpretation

52

Simulator1: 
Neutral 

transport
(e.g. KN1D)

Simulator2:
Synthetic 

pinhole camera
(e.g. CHERAB)

ne, Te, Ti
ψ(R,Z) nd LLAMA ILy⍺

(1) Generate 1000’s synthetic LLAMA signals, with added noise

(2) Train specially designed neural networks (e.g. normalizing flows) on the synthetic dataset to 
learn the inverse mapping, extracting nd from LLAMA measurements including 
uncertainties (posterior)

ne, Te, Ti
ψ(R,Z)

p(nd | LLAMA ILy⍺, ne, Te, Ti, ψ(R,Z))

(3) During operations, “inference” with neural network to extract 
nd from LLAMA measurements is very fast (~ms - s) and run 
locally, visualize between discharges nd over entire discharge

KEY INSIGHT: NN can enable fast simulation to experiment comparison

T. Khare, 2024, to be submitted
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High dimensional data poses difficulties for SBI 
with discrete normalizing flows  

• Strength but also drawback of discrete normalizing 
flows is that the bijective nature is hardcoded in 
the model, requiring clever architecture choices

• In practice, Jacobian between layers leads to input 
dimension constraints to ~O(30) due to memory 
and computation constraints

• Example: Infer the 3-D density field of the early 
universe θ given observations x of the dark matter 
distribution at low redshift, where both are 3-D on 
a 1283 voxel grid [Legin, arxiv 2023]

• How to overcome the dimension limitations of 
discrete normalizing flows?

• 53

(density early universe)

(density today)
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Diffusion models

Learn score function, use Langevin dynamics to generate new 
samples. Overcomes need to have Jacobian calc at each layer, allows 
using wide variety of architectures (usually UNet, Transformers) 

54

Y. Song, 2021
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Flow matching similar to diffusion, but learns deterministic 
flow field, “simulation-free” (a.k.a no ODE solve)

55

https://docs.google.com/file/d/19msvMnTjoEAadtk4IgLvZ8mijrXnNYMC/preview
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Score-based models in simulation-based inference 
(SBI)

• Score-based diffusion models learn the exact 
likelihood, and therefore can be used in SBI 
[Geffner 2022]

• Applied to inference of 1283 3-D density field at 
beginning of universe [Legin 2023] (though 
synthetic sanity check, no real observation 
used), used 2,000 (1 Gpc/h)3 dark matter 
N-body simulations

56

T. Geffner, arxiv 2022

R. Legin, arxiv 2023

True

Score-based 
diffusion

Discrete 
normalizing 
flow
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Digital twin extension to SBI based on diffusion/flow 
matching

• Digital twin is a “hybrid” data+sim model, 
supplementing modsim with physical device data for 
better predictive capabilities [NASEM 2024]

• Diffusion/flow matching very flexible models, with 
steering capability due to semantic concept learning
• Can be applied in a similar way to update models in 

digital twin manner
• Potentially sacrifice some extrapolation capability to new 

devices for gains in predictive capability for current (control, 
planning, etc.)

57

Rotu arxiv 2024

AI

Normal
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How can we best use AI for scientific discovery with 
experiment?

This talk explores two frontiers:

1. Connecting Models & Reality: Using generative AI to rigorously 
compare simulations with experimental data.

2. Automating the Workflow: Using agentic AI to assist in the process of 
research itself.

58
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Automating discovery process

• Berkeley A*lab fully automated robotic 
laboratory for materials discovery, 
connected with active learning and LLM 
to suggest novel materials and synthesis 
autonomously

• Initial claim of 41 novel compounds 
synthesized

• However, heavily disputed in the community 
on novelty of materials

• Cautionary tale on agentic AI driving 
discovery. Can these tools truly discover 
novelty?

59

Szymanski, Nature 2023
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LLMs expanding from chatbots to include reasoning, 
agentic capabilities for research and code

60
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DOE AI-jam session: a tale of two cities

61

• DOE held a 1000 scientist jam session at national 
lab sites in Feb 2025

• OpenAI provided access to newest (at the time) AI 
reasoning models: o3, o4-mini-high, and agentic Deep 
Research

• Scientist brought their problems to probe advanced AI 
reasoning models on scientific problems important to DOE

• For certain classes of problems, it was the best of 
times

• AI models scored an A- on PhD qualifying exam for 
plasma physics students in the Princeton Astrophysics 
department

• For other classes of problems, it was the worst of 
times

• AI models struggled with open-ended problems requiring 
high degree of creativity (not necessarily knowledge) 
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Updating models for specific capabilities such as 
reasoning, tool use, etc.

• Increasing capabilities of LLMs have 
come with larger trained base 
models AND post-training updates

• Reinforcement Learning with 
Verifiable Rewards (RLVR) and 
similar techniques enabling 
reasoning capability on domains 
with deterministic, verifiable 
objectives (math, coding)

• But RL is usually sample 
hungry, and difficult to build up 
posttraining datasets necessary 
for specific skills

62

N. Lambert 2025
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AlphaEvolve

• AI agents coupled with Google LLM 
(Gemini) and evolutionary algorithms to 
generate novel algorithms

• Found algorithm to reduce number of operations 
in 4 x 4 matrix multiply, datacenter 

• “While AlphaEvolve is currently being 
applied across math and computing, its 
general nature means it can be applied to 
any problem whose solution can be 
described as an algorithm, and 
automatically verified.”

• Searches space of programs much more 
intelligently, enables novel discovery

63

https://docs.google.com/file/d/1NWPrMlHwoOsTe9pKEpDMSAfKPCWooxRp/preview
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How to leverage these capabilities?

• First, AlphaEvolve not open (yet) but there is Sign 
Up list (sign up!)

• Many more tools from different vendors will be 
available (e.g. Microsoft Discovery recently 
released)

• Key need is defining correctly reward signal from 
fuzzy real-world reward functions

• Domain scientist in a natural position to do

• Connecting strong reasoning AI with our tools of 
HPC simulation and experimental facilities can 
accelerate science discovery

64

Adopted from B. Spears
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Conclusion

• “The proliferation of AI tools in science risks introducing a phase of scientific enquiry in 
which we produce more but understand less.” - Messeri, Nature 2024

• “Those who trust AI tools to overcome their own cognitive limitations become 
susceptible to illusions of understanding” - Messeri Nature 2024

• AI tools offer the promise of aiding researchers in multiple science fields to improve the 
process of scientific discovery

• Using AI with simulation-based inference to broadly compare and verify mechanistic 
simulation with experiment can greatly expand our ability to discover regions of 
mismatch, point to areas to improve -> code validation accelerated

• Future looking capabilities of agentic AI semi-automating discovery is closer, need 
domain scientist to engage in rewards signals, connecting tools, and human-in-the-loop 
for finding novelty 65
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https://arxiv.org/pdf/2202.00728.pdf
https://sites.google.com/view/optimizing-designs
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Basic fully-connected networks for profile transport

• Sometimes all you need (throw a 
neural network at it), especially when 
scalar inputs/outputs desired or 
possible

• If you can reduce what the ML model 
needs to predict, try first

• When higher-fidelity needed, go 
a little further…

67
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Backpropagation: the learning algorithm

• Backpropagation uses chain rule to 
determine how weights should 
change given an output loss.  
Propagate error backwards, 
calculating weight updates

• Most deep learning frameworks use 
autodifferentiation to accurately 
calculate gradients, no need to 
specify by hand

68

Rumelhart, “Learning representations by back-propagating errors”, Nature 1986


