
Plasma Diagnostics for Processing 

Applications

Vincent M. Donnelly

University of Houston

1

PPPL School on Plasmas for Microelectronics and Quantum Information Science, July 28 - August 1, 2025

2025 PPPL Graduate Summer School

https://gss.pppl.gov/2025/#Agenda


2
Degree of intrusiveness plus difficulty

Q
u

an
ti

ta
ti

ve
 I

nf
o

rm
at

io
n

Pressure/
throttle 

valve 
changes

Movable 
probe

Match 
settings

Laser-induced 
fluorescence (LIF)

Unresolved 
optical 

emission

Optical 
emission 

spectroscopy 
(OES)

Chamber 
wall 

probes

Manufacturing

R & D

Current/voltage/power 
line probes

Trade-Off Between Information and Ease of Implementation    



3

Electrical Probe Techniques

• Single Langmuir probe
❖ Most common probe
❖ Several commercial Langmuir probes are available
❖ Measures plasma potential (Vp), floating potential (Vf), electron density (ne), total positive ion 

density (ni
+), electron temperature (Te) and electron energy distribution function (EEDF).

• Double probe
❖ Measures current as a function of voltage between two floating probes.
❖ Used to obtain ni

+ and Te (high energy tail) in systems with no ground return path.

• Emissive probe
❖ Often used to measure Vp in systems with no ground return path.

• Hairpin probe
❖ Plasma-induced shift in -wave resonance frequency yields ne and Te. Can be used in systems 

with no ground return path.
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See Appendix 1 for how to extract EEDF from IV curves 
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Problem with Single Langmuir Probe: Shift Vp during I-V collection.

• Most commercial reactors lack a good electrical reference (i. e. ground) potential.  

• Consequently, Vp increases during collection of electron currents. 
• This causes a drastic overestimate of the true Vp, as well as Te.



7

V

I

Solution: Insert a reference electrode into the plasma (usually attached to the 
Langmuir probe) to measure the shift in Vp
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Why Probes are Problematic for Processing Plasmas

• Most detailed published studies are for Ar plasmas; virtually all processes use corrosive 
and/or depositing gases.

• Probe characteristics are distorted by contamination on probe tips.

• It is difficult to clean single and double probes in these processes in commercial reactors.

• Probes are intrusive and can perturb the process.

• Probes are feared to contaminate product wafers being processed.

• Interpretations of measurements are complicated.

• Consequently, probes are most valuable for plasma processing research, plasma etching 
and deposition tool development, and some early process development. 
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Light-Based Diagnostic Techniques

• Microwave Interferometry
❖ Measures line-integrated ne, requires 2 large opposing viewports.

• Optical Absorption Spectroscopy
❖ UV-visible absorption (broad band and resonance lamps) for line-integrated 

neutral number densities.
❖ Cavity ring-down spectroscopy: multi-pass laser absorption for line-integrated 

number densities.

• Laser Induced fluorescence (LIF) and scattering
❖ Simple LIF: Measures 3D relative number densities of atomic and molecular 

(mostly diatomics and some tri-atomics) neutrals and ions .
❖ Intermediate LIF: Absolute number densities with calibrations. 
❖ Advanced:

a) Thomson scattering: measure scattering of laser photons by electrons to 
obtain ne,  Te and EEDF.

b) Electric field measurements.
c) Others

• Optical Emission Spectroscopy (OES)
❖ Spectroscopic analysis of plasma-induced light from neutrals and ions.
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Laser-Induced Fluorescence (LIF)          Optical Emission Spectroscopy (OES)
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Detection of CF2 radicals in a plasma etching reactor by laser-induced fluorescence 
spectroscopy

 P. J. Hargis, Jr. and M. J. Kushnera)   Appl. Phys. Lett. 40(9), 1 May 1982
            Sandia National Laboratories, Albuquerque, New Mexico 87185
            (Received 7 December 1981; accepted for publication 24 February 1982) 
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• First use of LIF – 1971 – NO2(g)  
     (K. Abe, et al. J. Molec. Spectros. 38, 552 (1971).)
• “LIF” – coined by Richard Zare –Stanford
 

Laser diagnostics of plasma etching: Measurement of Cl2
+ in a chlorine discharge

            V. M. Donnelly, D. L. Flamm, and G. Collinsa)   J. Vac. Sci. Technol. 21(3), Sept/Oct. 1982.
            Bell Laboratories, Murray Hill, New Jersey
            (Received 22 March 1982; accepted 11 May 1982) 
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Combining LIF and Langmuir Probe to Measure Cl+ and Cl2
+ Number Density vs. Power
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Conventional LIF configuration
Slide courtesy of Yevgeny Raitses

• Best spatial resolution (sub-mm range) at 𝜋/2 fluorescence collection

• Minimum of two optical ports for operation
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Confocal – need only 1 viewport
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Optical Emission Spectroscopy (OES)
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Plasma Optical Emission Spectroscopy

• Optical emission spectroscopy (OES) is one of the most widely used diagnostic technique in plasma 

processing, including in manufacturing for end-point detection, first used by Harshbarger, et al. in 

1977 to study a CF4/O2 plasma during Si etching.

• Optical emission in plasmas is a mostly from electron-impact excitation.

• Most atoms and diatomics can be monitored, as well as some triatomics (e.g. CF2, SiCl2, CO2
+).

• Emission from larger molecules is either lacking, or broad and featureless.

• The complex excitation mechanism, makes it is difficult (but not impossible, see “actinometry” below) 

to derive relative and absolute species number densities from OES, hence it is generally qualitative.
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“A Study of the Optical Emission from an rf Plasma during Semiconductor Etching”

Applied Optics, 31, 201 (1977). W. R. HARSHBARAR, R. A. PORTER, T. A. MILLER, and P. NORTON

 Bell Telephone Laboratories Inc. Allentown, PA and Murray Hill, NJ
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CF4/O2 plasma

• Adding O2 to CF4 plasma greatly increases F atom 
density.

• Si etching rate also increases and peaks before F peaks.

• Provided great insights into plasma chemistry and 
etching mechanism.
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Basic Requirements for OES
• Spectrometer

❖ Decent resolution (0.5 nm or better)
❖ Spectral range: 200 to 900 nm.
❖ Detector: CCD is sensitive enough, and can follow changes as fast as 0.05 s. 

Intensified CCD (ICCD) provides ns resolution and higher sensitivity, if needed.

• Reactor 
❖ Single UV-grade fused silica or sapphire viewport is adequate.

• Reference Data
❖ Atomics: NIST Atomic Spectra Data base. https://www.nist.gov/pml/atomic-

spectra-database
❖ Diatomics: “Molecular Spectra and Molecular Structure: Constants of Diatomic 

Molecules”, Huber and Herzberg, Van Nostrand, New York, 1979; “Spectroscopic 
Data” Part 1: Heteronuclear Part 2: Homonuclear Diatomics, Suchard and Melzer, 
Springer 1976; “The Identification of Molecular Spectra”, Pearce and Gaydon, 4th 
Edition, Chapman and Hall, London/Wiley, New York, 1976. 

• Expertise
❖ Considerable experience is necessary. Many assignments in the plasma processing 

literature are questionable.

https://www.nist.gov/pml/atomic-spectra-database
https://www.nist.gov/pml/atomic-spectra-database
https://www.nist.gov/pml/atomic-spectra-database
https://www.nist.gov/pml/atomic-spectra-database
https://www.nist.gov/pml/atomic-spectra-database
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How to Correctly Identify Peak in Optical Emission Spectra
(necessary but not sufficient) 

• Calibrate the wavelengths of your spectrometer as accurately as possible.

• Go to the primary source for known emission wavelengths (see previous slide).

• Atomic lines are narrow and symmetric (only as good as the spectrometer).

• Molecular lines are almost always asymmetric, degraded either toward the red or the violet 
direction.

• If one feature is assigned to a species, then other emissions from that species must also be 
present with relative intensities similar to tabulated values.
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• Bands are violet-degraded.

• Band progressions due to combinations of transitions between vibrational levels of the upper 
and lower electronic states.
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Optical Emission Spectra of a Cl2 Plasma Etching of Si and SiO2 

• Spectra are dominated by emission from Cl.
• Etching Si with substrate stage RF-bias, strong Si, SiCl, and SiCl2 emissions are observed.
• Emission from Cl2 is also apparent in the spectrum recorded during slow etching of SiO2. 
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• Add a rare gas, A, (usually Ar) to the feed gases, at a known number density nA.

• If the electron impact excitations cross sections, X() and A() for the species of interest, X, 

and A have similar relative energy, , dependences, then

)/( ,,,,,,, kjiAkjiXAAXX IInan =

where aX,A is a constant, proportional to X() and A() and other factors.

• Relative densities of atoms (F, Cl, Br, H, O) and small molecules (Cl2, CF, CF2, BCl, N2, CO) 

have been determined by this method, with varying degrees of accuracy.

• In some cases, absolute number densities have also been measured with calibration methods.

• Lets look at an example.

OES with Actinometry
(see Appendix 2 for details)
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Advanced Actinometry: Cl and Cl2 Number Densities in a Cl2 Plasma

• Include electron impact excitation from rare gas 

metastables.

• Include conditions-dependence proportionality constant.

• Include dissociative excitation:
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Plasma-Surface Interactions
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Ion-Stimulated Desorption – Plasma Induced Emssion
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• Emission from Si, SiCl and SiCl2.

Spectrum Recorded with Continuous Cl2 Flows and Powers
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• 160 sccm continuous Ar, 20 sccm, 1s Cl2 doses with ICP off, 
then ICP(280W), -60 VDC bias.

• SiClx emission intensities decay during the bias period. 

Spectra Recorded Under the Atomic Layer Etching ALE Conditions 
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• Emissions primarily from primary Si, SiCl and SiCl2 desorption products (see Appendix 3).
• Roughly 2s is required to sputter away the SiClx layer formed during each dosing step.



• The slope of integrated SiCl and SiCl2 emissions track the per-
cycle etching rates of 2.86 and 2.68 nm/cycle. 

• Only a small overlap in time between Cl2 pulse and ICP 
power pulse. ALE behavior because most of the Cl2 dosing 
occurs without etching.

• Partial overlap between Cl2 pulse and ICP power pulse. Non-
ALE behavior because nearly half the etching occurs during 
the Cl2/ICP dosing step.
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Using OES to Follow Cl-uptake and Si Etching During Atomic Layer Etching  

35



36

UV Spectra During O2/Ar Plasma Etching of Diamond (100)

• Flow rates (sccm): Ar = 8, O2 = 
2

• Pressure = 10 mTorr
• ICP power = 300 W
• Magnet current = 55 A
• Bias = 0 or -200 VDC self bias
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• Bias-on and bias-off spectra dominated by complex emission spectra of O2
+,

• Subtracting bias-off from bias on reveals emissions from CO, CO2
+ and Si.

Si carrier wafer
Diamond sample
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How Can We Be Sure of the Product Assignments?
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• CO2 plasma confirms the assignments of CO and CO2
+.

• Note that CO emissions are very weak relative to CO2
+ at 

low power because very little CO2 dissociation occurs.

• Strong Si emission in pure Ar plasma with bias 
due to Si sputtering.
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Diamond Etching Product Emission Intensities as a Function of %O2 and DC Self-Bias 

• Product emissions (and presumably etching rates) 
increase with %O2 in the feed gas.

• CO2 emission increases strongly with increasing 
%O2, while CO appears to peak near 80%O2. 

• CO emissions increase with bias much more 
strongly than does CO2. 



Chemical Wall Probe: Ion-Induced Desorption, Optical Emission Spectroscopy 

• Coupon piece in chamber wall.

• Periodic RF bias applied to coupon.

• Line-of-sight OES isolates region 
above coupon.

• Very small perturbation to plasma.

• Record OES with and without 
coupon bias - Difference comes 
from products desorbed from the 
coupon.
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Optical Emission 
Spectra with the 
Coupon Bias On and 
Off During (a) and (b) 
or After (c) and (d) 
Sputter Removal of a 
SiClxOy Layer that 
Forms on the Yttria 
Walls During Si Etching 
in a Cl2/O2 Plasma. 
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In-Situ Sputter Depth Profile of SiClxOy Layer Deposited on Yttria in a 
Cl2/5%O2 Plasma During Silicon Etching

• With further calibrations, it is possible to convert sputter time to depth.

41



42

Questions?
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• Cylindrical probe of area, A

• Isotropic electron velocity distribution

• Probe operated with electron-retarding voltage VB (electron-retarding means

   V = p - VB > 0, where p is plasma potential)

• In spherical polar coordinates, electron current is:

• v is electron speed, min = cos-1(vmin/v) and vmin = [2e(p – VB)/me]
1/2

• Integrate over  and 

  

Appendix 1: Determination of electron energy distributions (EEDF) from Langmuir 
probe measurements (see Lieberman, Lichtenberg, 2nd ed. p 185-195)
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• Change from electron speed to energy,  = mv2/2e :

• V = p - VB 

• Differentiate twice with respect to V

• EEDF, ge(), is related to fe by ge()d = 4v2fe(v)dv, therefore

Determination of electron energy distributions (EEDF) from Langmuir probe 
measurements (cont.)
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• In terms of V = p - VB = 

• More common to plot electron 

energy probability function (EEPF),

     gp() =  -1/2ge()

• For Maxwellian EEPF
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Determination of electron energy distributions (EEDF) from Langmuir probe 
measurements (cont.)
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Appendix 2: Actinometry

• Assume excited state (k) of species X is populated solely by e-impact from 

its ground state (i).

• Then its absolute ground state number density (nX) is related to the intensity 
(IX,i,j,k) of emission at wavelength j,k accompanying the transition Xk → Xj by

a(,j,k) = spectrometer sensitivity at A,j,k

X,i,k(v) = cross section at electron speed v for e + Xi → Xk + e

fe(v) is the electron speed distribution function (4v2fe(v)dv is the 
number of electrons with speeds between v and v+dv) 

is the quantum yield for emission by Xk where  and 

kq are the radiative lifetime and quenching rate constant for Ak by all 

species at total pressure P

                             is the branching ratio for the transition Xk → Xj 
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Actinometry (cont.)

• The electron speed distribution and the proportionality constant are 

difficult to determine.

• Consequently rare gas actinometry is often used to convert emission 

intensities into quantitative, relative number densities.

• Technique was first applied in plasmas by Coburn and Chen.

• Add nA amount of a rare gas, A, with an excited state Ak at energy close 

to that of Xk. 

• Assuming that rare gas emissions are caused solely by e-impact 

excitation of the ground state, then it emission intensity is
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• If A(v)  X(v) at any v, then nX can be simply expressed as

)/( ,,,,,,, kjiAkjiXAAXX IInan =

where aX,A is a proportionality constant.

• Relative densities of atoms (F, Cl, H, O) and small molecules (Cl2, CF, CF2, BCl, N2, CO) have 

been determined by this method.

• In a few cases, absolute number densities have also been measured through several 

calibration methods.

Actinometry (cont.)
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Appendix 3: Excitation of Primary Desorption vs. Secondary Etch Products?

+   +   +   +   +   +   +   +   +   +   +   +

Secondary reaction 
product formed in the 
plasma and/or on walls

Emission from 
sputtered, diffused 
primary products

Sputtered Si-products
          Ion bombardment

         OES collected
           from this region

Si substrate

~1 cm

4 cm

+   +   +   +

• Emissions from primary desorption products have rise and fall times of ~0.7 to 4 ms, corresponding to 
diffusion into and out of the observation region.

• Emissions from secondary products will rise and fall times on the order of gas residence time of ~30 ms. 50
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• Emissions are highly modulated, with rise and fall times of ~0.4 to 2 ms,  indicating that they are predominately  
from the primary desorption products.

• Could be from electron impact directly of emitting species, or by dissociative excitation of higher chloride. 51
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• Conclude SiCl and SiCl2 emissions are from SiCl and SiCl2 primary desorption products.
• Si emission late in the ALE cycle is from sputtered Si; Si emission early in the cycle could be partially from the 

dissociative excitation of SiCl. 52
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THE SECOND PLASMA OPTICAL EMISSION
SPECTROSCOPY EXPERIMENT- 1666 

Isaac Newton – Cambridge
University

The first plasma optical emission experiment
was less than a total success:
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Example 2: Emission spectrum of a C2F6 inductively-coupled plasma during 
etching of SiO2 and Si



Coupon Bias On Minus 
Coupon Bias Off 
Optical Emission 
Intensites for Si, SiCl, Y 
and O During Sputter 
Removal of a SiClxOy 
Layer that Forms on 
the Yttria Walls During 
Si Etching in a Cl2 or 
Cl2/5%O2 Plasma.

• With calibrations, these 
measurements can be 
converted into sputter depth 
profiles.
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