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Which characterization
technique is the right
one for my material?

That depends a great deal on
what it is you want to learn!

This lecture: a brief roadmap to this
dense forest of materials science
characterization techniques
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Philosophical considerations
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electronic
structure

Which techniques
address these?

Photoluminescence
Inverse photoemission
ARPES

RIXS
Raman
XAS
’ LEED/RHEED

SAXS, WAXS,
GIWAXS

* dynamics

morphology

composition atomic

structure
Not exhaustive!



Technigues by type of probe

optical photoelectric scanning probe time-resolved
Photoluminescence XPS/UPS STM PL, Raman
Raman ARPES AFM XAS
XAS, NEXAFS PEEM SNOM XPS, ARPES
Ellipsometry Tip-enhanced Raman PEEM
Reflectivity STM, SNOM
RIXS
electron scattering thermal
LEED/RHEED SAXS, WAXS, GIWAXS DSC
Auger RIXS TGA
EELS Neutron TPD

Inverse photoemission
(S)(T)EM Not exhaustive!




Microscopy

Magnify and resolve small features

optical electron scannhing probe
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Optical microscopy
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* Resolution down to ~200 um if perfect
 Consider: if your sample is very thin, it may
have very poor optical contrast!
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 Can be easily coupled with lasers
to combine microscopy with laser
spectroscopic approaches



Electron Microscopy

* Use a beam of electrons to illuminate a
sample, a series of electro-optic lenses to
focus and control the beam

* Resolution typically few to 10s of nm
depending on system

* Vacuum techniques, samples should be
reasonably conductive (or sputter coated)

* Consider checking out
https://myscope.training/ to practice
aligning imaging columns

MYSC@PE
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Electron Microscopy

TEM SEM

* Transmission vs. scanning s an

* TEM: electrons transmit and are — ) e
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* TEM can offer higher resolution, but [] B ... - S— s
samples must be thin and prepared T T — —
on special grids (tricky) — - ] rrogec " N

* STEM variation combines both - viewng = — viewng
same sample requirements as TEM,
but can achieve higher resolution of ————— i B 3
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Scanning Probe Microscopy

A very diverse family of techniques typically capable of achieving
sub-nm resolution of features on the surface of materials

Cantilever

Sharp metal tip —

Fig. 1| Basic set-up for scanning probe microscopy. Scanning tunnelling microscopy (STM) and atomic force microscopy
(AFM) both use a tip to scan the sample. Both techniques use different feedback signals to maintain constant tip-sample
interaction, but their basic principle of operation and image acquisition mechanisms are similar. a| STM collects the
tunnelling current between the tip apex and the sample when a bias voltage is applied. b | AFM detects local forces and
corresponding mechanical parameters through a spring-like cantilever.
K. Bian et al., Nature Reviews Methods Primers. 1, 36 (2021)



Atomic Force Microscopy

* |In contact AFM, the tip
directly contacts the
surface, providing a highly

Substrate

sensitive probe of surface Detector and
feedbagk G0

rOUghneSS (SUb nm) electronics Height Sensor 2.0 um
« Ambient technique hotodiode rcer

suitable for a range of

samples from conducting

to insulating

> Cantiliever

Sample surface & tip
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Scanning Tunneling Microscopy

* Most typically requires an ultrahigh vacuum
environment and cryogenically cooled temperatures

e Strict: sample must have a clean surface and be
conductive at these temperatures. Also, slow!
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Scanning Tunneling Spectroscopy

* Bias voltage allows current flow between tip and sample without contact via
quantum tunneling through the barrier

* To map the local density of states, fix the tip height and measure the change
in electron tunneling current as a function of electron energy (tip bias)
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Electron Diffraction e s/ /

Sensitive approach for measuring crystal

lattice structure
Ultrahigh vacuum technique

Can be destructive to the sample Ansmtted L m
beam

There are also x-ray diffraction + scattering
related variants (SAXS, WAXS, GIWAXS)

- (should | use electrons
or x-rays? If the sample is
smallorthin (2D), you
must use electrons. If the
sample is thicker/3D, go
for x-rays)

Thickness of the
sample
100-300 nm

Crystal
planes

beam

M. A. Asadabad and M. J. Eskandari. Modern Electron
Microscopy in Physical and Life Sciences, 2016.
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Fig. 4. Example of diffraction patterns: Crystalline Si (left), polycrystalline Si (centre), and quarts glass (right)

https://www.mst.or.jp/Portals/0/en/en_ed.html



LEED, RHEED

 LEED (Low-Energy Electron Diffraction) and
RHEED (Reflection High-Energy Electron
Diffraction) are both powerful tools for
observing surface crystal, growth, and
cleanliness

 The lower energy range of LEED (~10-200 eV)
compared to RHEED (~keV) makes it more
surface sensitive (can identify surface
reconstruction)

* The grazing reflection geometry of RHEED is
more amenable for in situ measurements
during growth or processing
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Elemental Analysis with Electrons

(a) (b)

Auger electron spectroscopy @ [— T
Relaxation of outer shell electron to a
core hole leads to emission of Auger 3 R
electrons with characteristic energies Flectron collision \J

Auger transitions are labeled according i
to the shells involved in the process “ @ Monolayer WS, on Si

* Process to the right would be labeled Whoo
KL,L, 5

Transition energies are element specific  Augerelectron emission _ W
but subject to shifts based on chemical :
environment

m
=
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E

Surface-sensitive vacuum technique
often coupled with LEED/RHEED
instruments
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Spectroscopy

* Using electromagnetic radiation to probe
the properties of matter (often electronic)

* Broadly categorized either by the range of
the electromagnetic spectrum used, or by
the type of interaction (absorption,
fluorescence, Raman, etc.)
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Conduction Band

Optical Photoluminescence

Excitation
Photon

Used to probe optical band gaps and A~
optical transition energies for
semiconducting systems

Easy to perform with visible lasers in Y
commercial instruments, does not
carry surface cleanliness
requirements of other techniques

Note that indirect band gap
semiconductors may have weak
signatures...

Luminescence
Photon

YAV Ve Ve 2

Band Gap Energy

—— monolayer
—— bilayer
hexalayer
bulk

MoS, Raman

Time-resolved photoluminescence is
a popular variant in which the optical
excitation is synchronized with
photoluminescence recording

Photoluminescence
(Raman normalized)

550 ' 6(')0 ) 65":0
Wavelength A (nm)

A. Splendiani, Nano Lett. 10, 4, 2010



Raman Spectroscopy

Visible, IR, UV, or x-ray light can be used

Inelastic scattering with material phonons: Raman
scattering

Sensitive to material vibrational modes

Can be very useful for identifying number of layers
in low-dimensional/thin materials
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Absorption Spectroscopies

* For static approaches, x-ray techniques
are the most powerful (XAS, NEXAFS).
Time-resolved approaches can be done
with lower energy photons

* Very sensitive to local atomic
arrangements, oxidation states, etc.

* For absorption, samples should be thin
(consider: x-ray damage, signal-to-
noise...). Usually, reflective geometry can
also be an option for thicker samples

e Signals can be surprisingly complex to
analyze! Energy shifts and pre-edge
features hold the desired information
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Ellipsometry , T

* Used for probing the optical properties of thin films dI
(complex refractive index, dielectric function)

THIN FILM

* | Note assumption that sample is optically SUBSTRATE
homogeneous, isotropic, and not rough on surface Y

Ep P Ep

Measures changes in polarization state of incident light and reflected light
A: Phase difference between S polarization and P polarization
Y: Reflection amplitude ratio angle of S polarization and P polarization

ULVAC



PhOtOemISSIOn - XPS/U PS Aaay e Phobstections:

* Sensitive probe of the occupied \ /

energy levels of a material e

gY o jﬁ ’7’ Photoelectron

* Ultraviolet UPS typically done at e - o

21 eV (He lamp) i

eurofins

* Higher energy XPS (e.g., ALKa) is

element-specific — exact .

photon

recorded energies of core levels o \
are sensitive to local environment

* Requires ultrahigh vacuum
environment

1s (O K

¢ Likely easy to access basic @ = clectron detected in experiment

capabilities XPS m

Clean Energy wiki




Photoemission - ARPES

Photon in, electron out A
technique that directly records
momentum space information
by recording angles of emission

Ultrahigh vacuum technique;
very surface sensitive

X
Requires a single crystalline
sample with clean surface and
not too insulating material or Reciprocal
conductive substrate Exin =hv —W — Ep Space
Can be performed with a high ky = 2myEyin)Y/?sin6/h
energy lamp light source, but A

specialized equipment typically
means going to a synchrotron



Inverse Photoemission Spectroscopy

Electron in, photon out
technique

Monochromatic electron
source impinges on the
sample, a small number
relax into formerly
unoccupied states by
emission of a photon

Relatively simple way to
record basic excited state
energy information if time
resolution is not needed
and coarse energy
resolution is OK (~1 eV)

or

N == empty

(b)
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S. Kim et al., Science and

IPES Technology of Advanced Materials

2018, 19(1):486-

Marco Vanzini
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Which characterization
technique is the right
one for my material?

That depends a great deal on
what it is you want to learn!

Much more that lies beyond this talk!
(Come talk to me about time-resolved
spectroscopies)










Time-resolved photoemission
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A. Kunin et al. Phys. Rev. Lett. 130, 046202 (2023) H. Terrones et al. Sci Rep. 3, 1549 (2013)

* Directly visualize electrons (and holes, as depletion) in momentum space and map the
occupied band structure vs. time

* Space charge effects typically become limiting factor for energy resolution and
sensitivity
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