

Microscopy and Spectroscopy to Characterize Processed Materials

Alice Kunin

Assistant Professor

Department of Chemistry

Princeton University

2025 PPPL Graduate Summer School – July 29, 2025

Which characterization technique is the right one for my material?

That depends a great deal on what it is you want to learn!

This lecture: a brief roadmap to this dense forest of materials science characterization techniques

Practical considerations

- Size
- Thickness (/thinness, substrate)
- Surface vs.
 bulk
- Resolution (spatial, energy, etc...)

Surface atom: Unsatisfied vacancies (Dangling bonds)

Philosophical considerations

- Morphology
- Composition
- Lattice structure
- Electronic structure
- Dynamics, light-matter interactions

Techniques by type of probe

optical

Photoluminescence Raman XAS, NEXAFS

> Ellipsometry Reflectivity

photoelectric

XPS/UPS ARPES PEEM

scanning probe

STM AFM SNOM

Tip-enhanced Raman

time-resolved

PL, Raman XAS XPS, ARPES PEEM STM, SNOM RIXS

• • •

electron

LEED/RHEED

Auger

EELS

Inverse photoemission (S)(T)EM

scattering

SAXS, WAXS, GIWAXS

RIXS

Neutron

thermal

DSC

TGA

TPD

Not exhaustive!

Microscopy

Magnify and resolve small features

optical

electron

scanning probe

spatial resolving power

relative ease of use, speed of measurement

Optical microscopy

- Resolution down to ~200 um if perfect
- Consider: if your sample is very thin, it may have very poor optical contrast!

 Can be easily coupled with lasers to combine microscopy with laser spectroscopic approaches

Electron Microscopy

- Use a beam of electrons to illuminate a sample, a series of electro-optic lenses to focus and control the beam
- Resolution typically few to 10s of nm depending on system
- Vacuum techniques, samples should be reasonably conductive (or sputter coated)
- Consider checking out <u>https://myscope.training/</u> to practice aligning imaging columns

Monolayer WS₂ grown flakes in SEM

Electron Microscopy

- Transmission vs. scanning
- TEM: electrons transmit and are imaged to a camera, where contrast is governed by electrons scattered/absorbed by the sample
- SEM: detect secondary and backscattered electrons from the sample surface
- TEM can offer higher resolution, but samples must be thin and prepared on special grids (tricky)
- STEM variation combines both same sample requirements as TEM, but can achieve higher resolution

SEM

TEM

Scanning Probe Microscopy

A very diverse family of techniques typically capable of achieving sub-nm resolution of features on the surface of materials

Fig. 1 | Basic set-up for scanning probe microscopy. Scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) both use a tip to scan the sample. Both techniques use different feedback signals to maintain constant tip–sample interaction, but their basic principle of operation and image acquisition mechanisms are similar. a | STM collects the tunnelling current between the tip apex and the sample when a bias voltage is applied. b | AFM detects local forces and corresponding mechanical parameters through a spring-like cantilever.

Atomic Force Microscopy

- In contact AFM, the tip directly contacts the surface, providing a highly sensitive probe of surface roughness (sub nm)
- Ambient technique suitable for a range of samples from conducting to insulating

Scanning Tunneling Microscopy

- Most typically requires an ultrahigh vacuum environment and cryogenically cooled temperatures
- Strict: sample must have a clean surface and be conductive at these temperatures. Also, slow!

Constant height mode

Tunneling Current
Tip path = Topography

Tip path = Topography

Tip path = Topography

Park

Au (100) surface (Erwin Rossen)

Constant current mode

Scanning Tunneling Spectroscopy

- Bias voltage allows current flow between tip and sample without contact via quantum tunneling through the barrier
- To map the local density of states, fix the tip height and measure the change in electron tunneling current as a function of electron energy (tip bias)

Electron Diffraction

- Sensitive approach for measuring crystal lattice structure
- Ultrahigh vacuum technique
- Can be destructive to the sample
- There are also x-ray diffraction + scattering related variants (SAXS, WAXS, GIWAXS)

→ (should I use electrons or x-rays? If the sample is small or thin (2D), you must use electrons. If the sample is thicker/3D, go for x-rays)

M. A. Asadabad and M. J. Eskandari. *Modern Electron Microscopy in Physical and Life Sciences*, 2016.

Fig. 4. Example of diffraction patterns: Crystalline Si (left), polycrystalline Si (centre), and quarts glass (right)

LEED, RHEED

- LEED (Low-Energy Electron Diffraction) and RHEED (Reflection High-Energy Electron Diffraction) are both powerful tools for observing surface crystal, growth, and cleanliness
- The lower energy range of LEED (~10-200 eV) compared to RHEED (~keV) makes it more surface sensitive (can identify surface reconstruction)
- The grazing reflection geometry of RHEED is more amenable for in situ measurements during growth or processing

LEED geometry

Elemental Analysis with Electrons

Auger electron spectroscopy

- Relaxation of outer shell electron to a core hole leads to emission of Auger electrons with characteristic energies
- Auger transitions are labeled according to the shells involved in the process
 - Process to the right would be labeled $KL_1L_{2.3}$
- Transition energies are <u>element specific</u> but <u>subject to shifts based on chemical</u> <u>environment</u>
- Surface-sensitive vacuum technique often coupled with LEED/RHEED instruments

100

150

Energy (eV)

200

250

0.25

0.00

Spectroscopy

- Using electromagnetic radiation to probe the properties of matter (often electronic)
- Broadly categorized either by the range of the electromagnetic spectrum used, or by the type of interaction (absorption, fluorescence, Raman, etc.)

ELECTROMAGNETIC SPECTRUM

Kari Hyll

Optical Photoluminescence

- Used to probe optical band gaps and optical transition energies for semiconducting systems
- Easy to perform with visible lasers in commercial instruments, does not carry surface cleanliness requirements of other techniques
- Note that indirect band gap semiconductors may have weak signatures...
- Time-resolved photoluminescence is a popular variant in which the optical excitation is synchronized with photoluminescence recording

A. Splendiani, Nano Lett. 10, 4, 2010

Raman Spectroscopy

- Visible, IR, UV, or x-ray light can be used
- Inelastic scattering with material phonons: Raman scattering
- Sensitive to material vibrational modes
- Can be very useful for identifying number of layers in low-dimensional/thin materials

Wikipedia: Raman spectroscopy

Absorption Spectroscopies

- For static approaches, x-ray techniques are the most powerful (XAS, NEXAFS).
 Time-resolved approaches can be done with lower energy photons
- Very sensitive to local atomic arrangements, oxidation states, etc.
- For absorption, samples should be thin (consider: x-ray damage, signal-tonoise...). Usually, reflective geometry can also be an option for thicker samples
- Signals can be surprisingly complex to analyze! Energy shifts and pre-edge features hold the desired information

Ellipsometry

- Used for probing the optical properties of thin films (complex refractive index, dielectric function)
- ! Note assumption that sample is optically homogeneous, isotropic, and not rough on surface

Measures changes in polarization state of incident light and reflected light

Δ: Phase difference between S polarization and P polarization Ψ: Reflection amplitude ratio angle of S polarization and P polarization

Photoemission – XPS/UPS

- Sensitive probe of the occupied energy levels of a material
- Ultraviolet UPS typically done at 21 eV (He lamp)
- Higher energy XPS (e.g., Al Kα) is element-specific – exact recorded energies of core levels are sensitive to local environment
- Requires ultrahigh vacuum environment
- Likely easy to access basic capabilities

eurofins

Photoemission - ARPES

- Photon in, electron out technique that directly records momentum space information by recording angles of emission
- Ultrahigh vacuum technique; very surface sensitive
- Requires a single crystalline sample with clean surface and not too insulating material or conductive substrate
- Can be performed with a high energy lamp light source, but specialized equipment typically means going to a synchrotron

$$E_{kin} = hv - W - E_B$$

$$k_{\parallel} = (2m_e E_{kin})^{1/2} \sin \theta / \hbar$$

Inverse Photoemission Spectroscopy

Marco Vanzini

- Electron in, photon out technique
- Monochromatic electron source impinges on the sample, a small number relax into formerly unoccupied states by emission of a photon
- Relatively simple way to record basic excited state energy information if time resolution is not needed and coarse energy resolution is OK (~1 eV)

Technology of Advanced Materials 2018, 19(1):486-494

Which characterization technique is the right one for my material?

That depends a great deal on what it is you want to learn!

Much more that lies beyond this talk! (Come talk to me about time-resolved spectroscopies)

Time-resolved photoemission

$$E_{kin} = hv_{probe} - W - E_{BE}$$
$$k_{\parallel} = (2m_e E_{kin})^{1/2} \sin \theta / \hbar$$

A. Kunin et al. *Phys. Rev. Lett.* **130**, 046202 (2023)

H. Terrones et al. Sci Rep. 3, 1549 (2013)

- Directly visualize electrons (and holes, as depletion) in momentum space and map the occupied band structure vs. time
- Space charge effects typically become limiting factor for energy resolution and sensitivity