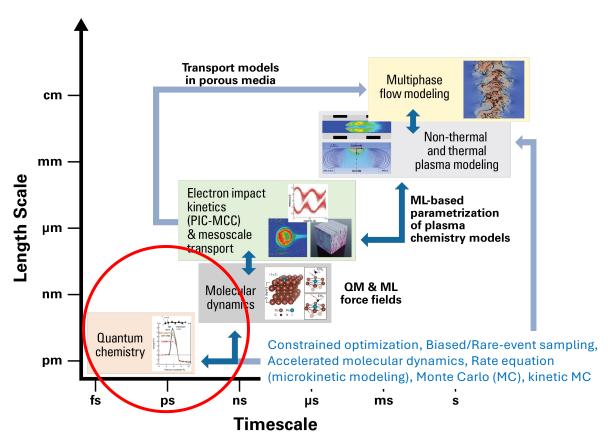







Modeling excited-state chemistry and quantum defects via quantum mechanics


C-H/O-H breaking

#### John Mark P. Martirez

Applied Materials and Sustainability Sciences Princeton Plasma Physics Laboratory Princeton University

July 30, 2025

# Temporal and spatial scales of reactions and enabling computational methods



Multi-level and multi-scale schemes can facilitate systematic understanding of the elementary processes, from atomic-scale chemistry to continuum physics

Continuum physics-based models for millisecond and micrometer-scale phenomena (longer/larger)

DFT for short MD simulations

DFT-based ML force-fields enable proper sampling of slow/rare events (or even parameterization of continuum models)

Correlated wavefunction theory and Density functional theory (DFT) for elementary chemical reactions in gas/plasma and surfaces

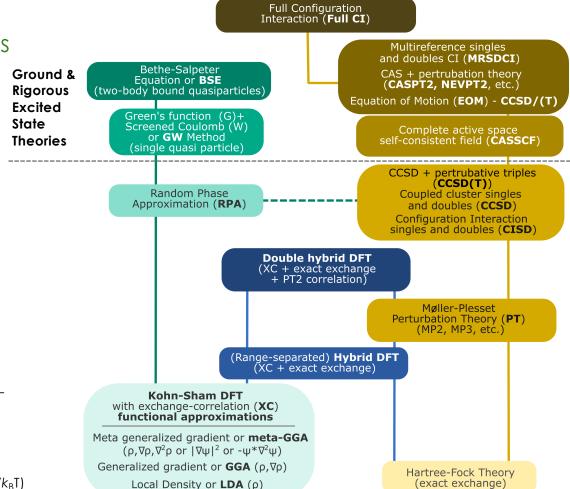
# Hierarchy of Quantum mechanical (QM) methods

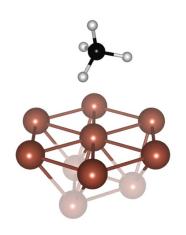
Solve Schrodinger Equation:

 $H\psi(\boldsymbol{r},\boldsymbol{R})=E\psi(\boldsymbol{r},\boldsymbol{R})$ 

**Approximations** introduced - mostly physically guided/inspired

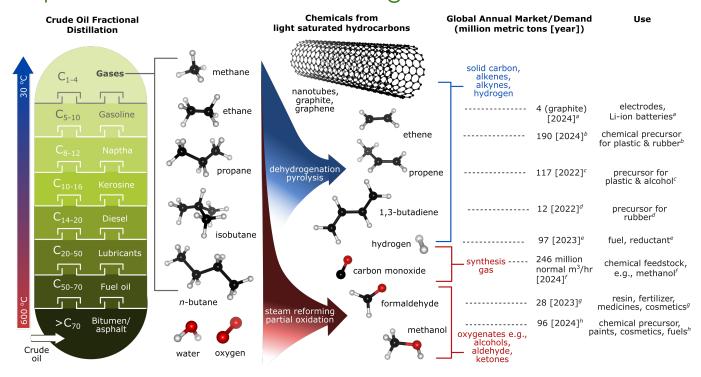
Ideally, errors are tractable, and method is systematically improvable (fortuitous error cancelation occurs)


#### Not all methods are created equal


Electron and nuclear degrees of freedom separated (Born-Oppenheimer – "fixed" nuclei); nuclei generally treated classically

In QM, one starts with classical interactions of electrons and nuclei (Coulomb – charged particles) and electrons' kinetic energy (a wave)

Systematically add quantum "world" effects – electron exchange (Pauli exclusion principle) and correlation (correlated electron motion reducing Coulomb repulsion, electron as wave)

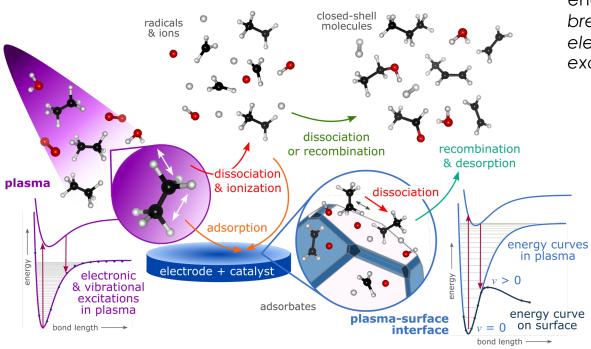

Chemical accuracy ~ 0.043 eV  $\rightarrow$  r  $\propto$  exp( $\pm$ E/k<sub>B</sub>T) ~ 6 or 1/6; DFT errors ~ 0.1 – 1.0 eV





# **Excited-State Chemistry**Enabled by Light and Plasma

## Chemical production and manufacturing



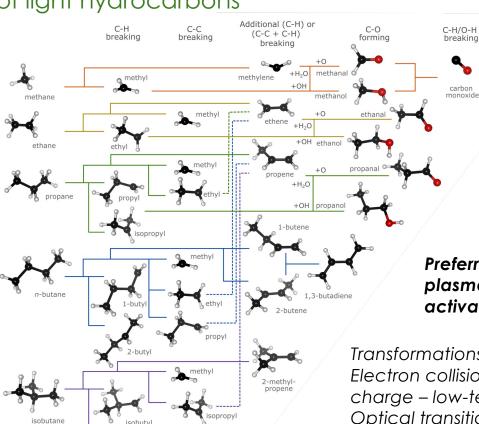

Light gases from petroleum are important chemical feedstocks to generate chemical precursors → produce economically important commodities, e.g., plastic, rubber, alcohols, fertilizers, cosmetics, etc.

Their conversion are typically facilitated by heat (fossil fuel combustion)

How can we enable electrification and decentralization? Plasma?

# Chemical processes in (low-temperature) plasma(and photolysis)




**Energy dissipation channels** of molecules after collision with an energetic electron ( $e^-$ ) in plasmas: break/form bonds; lose/gain electron(s); electronically/vibronically excited

Surfaces may influence preferred channel: chemistry-driven

Explore role of heterogenous catalysts e.g., Cu and Pt in plasma-assisted partial dehydrogenation of light alkanes

Excited-state methods for molecules are essential

## Dehydrogenation and partial oxidation of light hydrocarbons

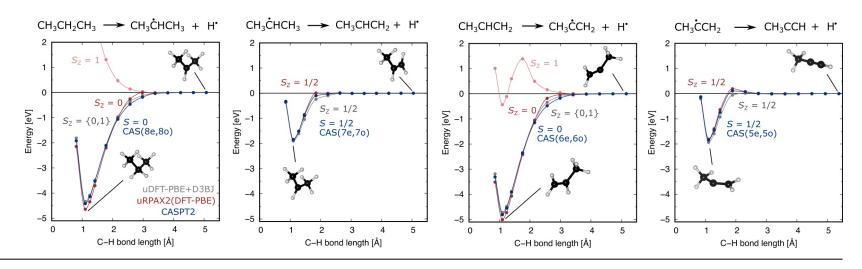


 $C_xH_v$  (+  $O_2/H_2O$ )

Chemistry may be (beautifully) complex but can be tractable

Dissociation channels are primary routes (C-H and C-C - easier), but new bonds may also form (C-C, C-O, O-H)

**Preferred** processes may be **different** between plasma, photolysis (light-driven) and thermal activation (heat-driven)


Transformations are driven by:

Electron collisions, imparting energy and sometimes charge – low-temperature plasmas;

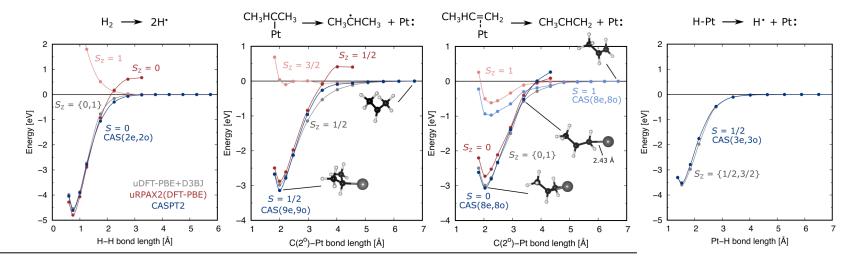
Optical transition – photolysis;

Translationally, rotationally, & vibrationally energized particle (molecules and atoms) collisions – thermal;

### Comparing QM methods: propane dehydrogenation gas-phase energetics



| Reaction\Reaction Energy (eV)                  | $\Delta$ (H <sub>f</sub> (0K)-ZPE) <sub>exp</sub> | uDFT-PBE+D3BJ | uRPAX2 | CASPT2 | NEVPT2 |
|------------------------------------------------|---------------------------------------------------|---------------|--------|--------|--------|
| $CH_3CH_2CH_3 \rightarrow CH_3HC=CH_2 + H_2$   | 1.60                                              | 1.70          | 1.71   | 1.65   | 1.50   |
| $CH_3HC=CH_2 \rightarrow CH_3C\equiv CH + H_2$ | 1.99                                              | 2.12          | 2.02   | 2.05   | 2.02   |


**Accurate predictions across the board**: spin-unrestricted (spin-contaminated) DFT-PBE+D3BJ and RPA(DFT-PBE) vs. spin-restricted multireference CASPT2/NEVPT2

exp: Computational Chemistry Comparison and Benchmark Database NIST (https://cccbdb.nist.gov) **Unrestricted DFT-PBE+D3BJ** C,H – PAW, planewave, 700 eV kinetic energy cut-off

**RPAX2**: A. Heβelmann, *Phys. Rev. A*, 85, 012517 (2012) **CASPT2**: H.-J. Werner, *Mol. Phys.* 89, 645 (1996) **NEVPT2**: C. Angeli, et al., *J. Chem. Phys.*, 114,10252, (2001)

C,H - All-electron; aug-cc-PVTZ

### Comparing QM methods: H-H and Pt-C/Pt-H bond dissociation

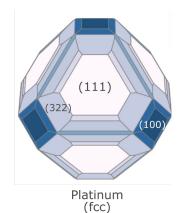


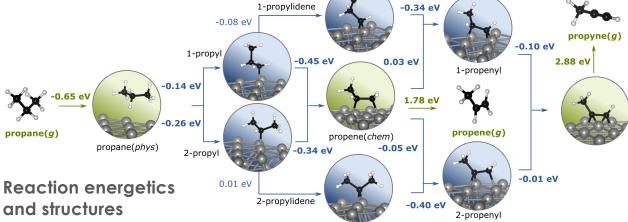
| Reaction\Reaction<br>Energy (eV)               | ∆(H <sub>f</sub> (0K)-<br>ZPE) <sub>exp</sub> | uDFT-<br>PBE+D3BJ | uRPAX2 | CASPT2 | NEVPT2 |
|------------------------------------------------|-----------------------------------------------|-------------------|--------|--------|--------|
| $H_2 \rightarrow 2H$                           | 4.75                                          | 4.54              | 4.79   | 4.61   | 4.53   |
| $CH_3CH_2CH_3 \rightarrow CH_3HC=CH_2 + H_2$   | 1.60                                          | 1.70              | 1.71   | 1.65   | 1.50   |
| $CH_3HC=CH_2 \rightarrow CH_3C\equiv CH + H_2$ | 1.99                                          | 2.12              | 2.02   | 2.05   | 2.02   |

Spin-unrestricted DFT-PBE+D3BJ comparable to CASPT2

Spin-unrestricted RPAX2(DFT-PBE): the same as DFT-PBE+D3BJ for H<sub>2</sub>, but underbinds Pt-C<sub>3</sub>H<sub>x</sub> complexes and fails convergence for Pt-H

**exp:** G. Herzberg, A. Monfils, J. Mol. Spectrosc. 5, 482 (1961); https://cccbdb.nist.gov


Unrestricted DFT-PBE+D3BJ C,H,Pt – PAW, planewave, 700 eV kinetic energy cut-off **RPAX2**: A. Heßelmann, *Phys. Rev. A*, 85, 012517 (2012) **CASPT2**: H.-J. Werner, *Mol. Phys.* 89, 645 (1996)


**NEVPT2**: C. Angeli, et al., J. Chem. Phys., 114,10252, (2001)

C,H – All-electron; aug-cc-PVTZ, Pt – 80-electron ECP; aug-cc-PVTZ Propane dehydrogenation mechanism on Pt(111): insights from DFT

#### Stable surfaces of face-centered cubic platinum (Pt) Wulff

construction – shape that minimizes the surface energy (equilibrium) given a crystal volume





## and structures

Periodic DFT-PBE+D3BJ

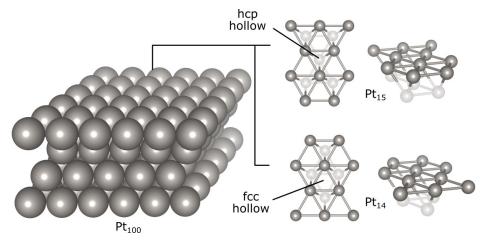
(atomic models: C,H, Pt black, white, grey spheres)

C,H, Pt – PAW potentials Planewave 660 eV kinetic energy cut-off Five-layer (3 x 3) Pt(111) slab, 7x7x1 k-point mesh

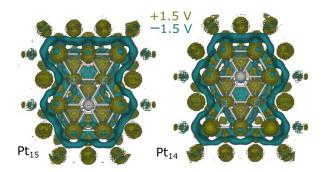
- ✓ Dehydrogenation at the 2° carbon preferred
- ✓ Decomposition energetically down hill on Pt(111)
- ✓ Strong Pt-H bond (desorption energy of  $H_2 = 1.09 \text{ eV/H}_2$ )
- ✓ 1- or 2-propenyl formation favored over propene desorption

X propene and propyne too strongly bound

How reliable are the calculated energetics?


## **Divide and Conquer**: Combining DFT and correlated wavefunction methods for surface reactions

 $\max \left[ W = E_{eDFT}^{A}[\rho^{A}, V_{emb}] + E_{eDFT}^{B}[\rho^{B}, V_{emb}] - \left\{ \int V_{emb} \rho^{A+B} dr \right\} \right]$ 

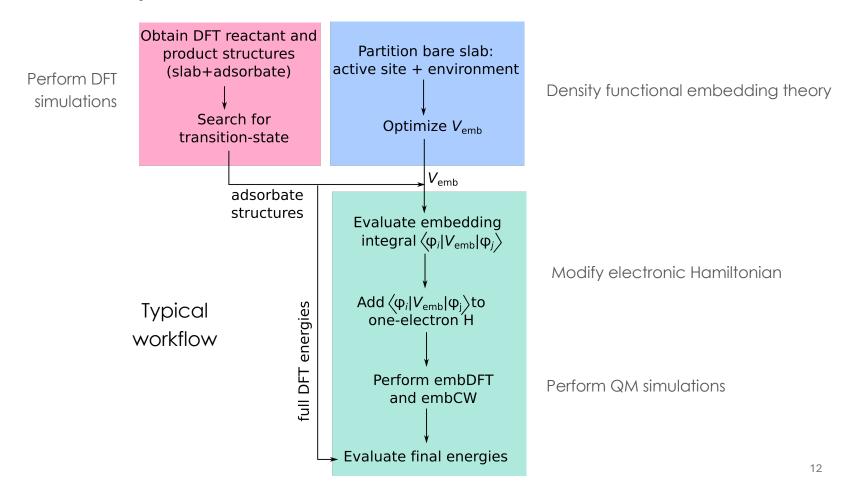

Density Functional Embedding Theory (DFET)

#### **Embedding scheme:**

Density functional embedding theory + Embedded correlated wavefunction (CW) theory



 $\frac{\delta W}{\delta V_{emb}(\mathbf{r})} = \frac{\delta E_{eDFT}^{A}}{\delta V_{emb}(\mathbf{r})} + \frac{\delta E_{eDFT}^{B}}{\delta V_{emb}(\mathbf{r})} - \frac{\delta E_{DFT}^{A+B}}{\delta V_{emb}(\mathbf{r})}$  $\approx \rho^{A} [V_{emb}](\mathbf{r}) + \rho^{B} [V_{emb}](\mathbf{r}) - \rho^{A+B}(\mathbf{r})$ 




$$\begin{split} E^{DFET} &= E_{full}^{PW-DFT} \\ &+ \left( E_{cluster}^{embGTO-CW}[V_{emb}] - E_{cluster}^{embGTO-DFT}[V_{emb}] \right) \end{split}$$

C. Huang, M. Pavone, E. A. Carter, J. Chem. Phys., 134, 154110 (2011)K. Yu, F. Libisch, E. A. Carter, J. Chem. Phys., 143, 102806 (2015)

Refinement for ground-state reaction energy surfaces AND enables accurate treatment of excited-state surfaces

### **Divide-and-Conquer**: DFET and embedded CW workflow



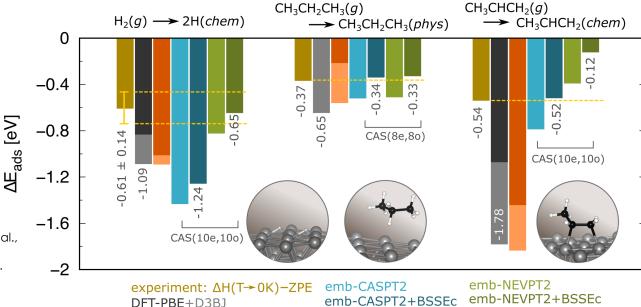
### Select Pt(111) surface reaction energetics from ECW theory

### DFT(PBE)+D3BJ vs. emb-CASPT2/NEVPT2

(w/ experimental benchmarks)

#### **Experimental values**

(OK- extrapolated and ZPE removed) Propane on Pt(111): M.C. McMaster, et al., Chem. Phys., 177, 461 (1993) H on Pt(111): B. Poelsema, et al., J. Phys. Condens, Matter, 22, 304006 (2010)


Propene on Pt(111): M. Salmeron, G.A. Somorjai, J. Phys. Chem., 86, 341 (1982)

#### Restricted DFT-PBE+D3BJ

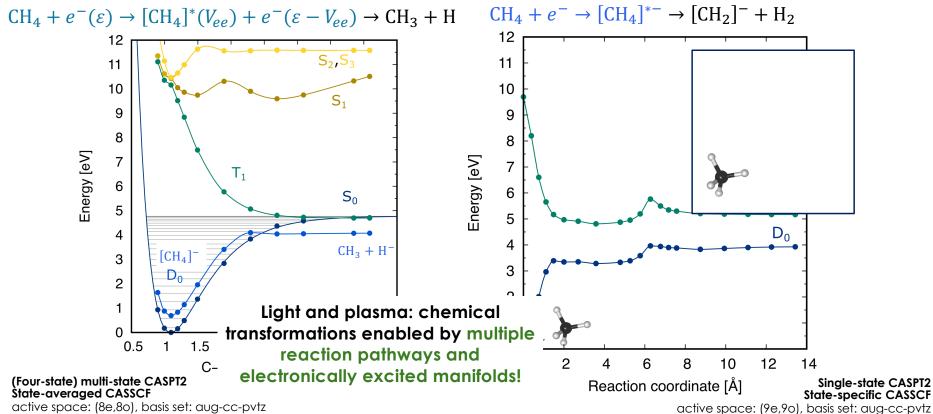
C,H,Pt - PAW, planewave, 660 eV kinetic energy cut-off

#### **CASPT2** and **NEVPT2**

C,H - All-electron; aug-cc-PVTZ Pt – 80-electron ECP; aug-cc-PVTZ



DFT-PBE+D3BJ DFT-r<sup>2</sup>SCAN-L+rVV10

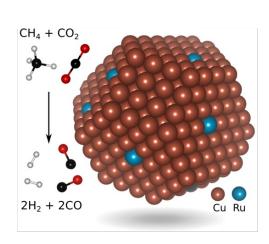

- DFTs and embCASPT2 over-bind \*H on Pt(111)
- embNEVPT2 ( $\theta_H$  = 0.222 H coverage, 2H\* adjacent fcc sites) within experimental range ( $\theta_H = 0.1$  to 1.0)
- Improvement in prediction accuracy across the board when using correlated wavefunction methods

## Excited-state decomposition of gaseous methane

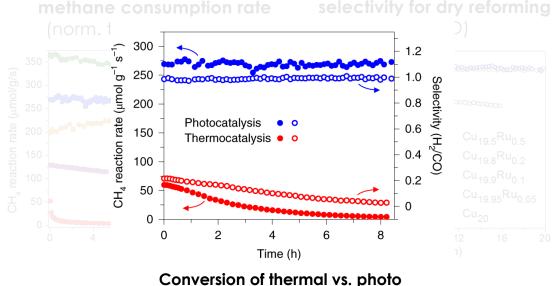
vertical excitation energy  $(V_{ee}) = 10.4 \text{ eV}$ vertical ionization energy = 14.2 eV (exp = 13.6 eV) vertical electron affinity  $(V_{EA}) = -0.72 \text{ eV}$ 

#### Dissociative electron impact excitation

#### Dissociative electron attachment




**DFT structures** 


**DFT** structures

# Light-activated (plasmonic) catalysis: methane dry reforming to syngas (industrially important chemical precursor)

Methane dry reforming on Ru-doped Cu



- H<sub>2</sub> + CO (syngas)
- Cu nanoparticles <10 nm (varying low Ru fractions) on MgO/Al<sub>2</sub>O<sub>3</sub>
- white light illumination (19.2 W-cm<sup>-2</sup>, room temp.)



Higher Rucc (Cu:R

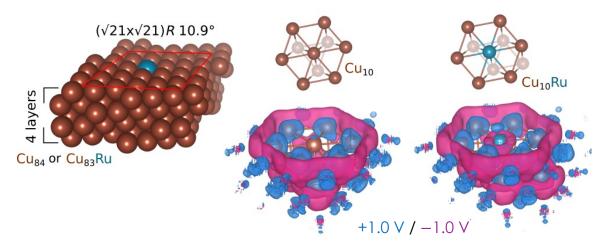
• Low Ru subjec

(Cu:Ru = 100:1)


Effective (light) and thermocatalytic (dark) temperatures ~ 1000 K.

Light = 19. 2 W/cm<sup>2</sup> white light peting reaction)

L. Zhou, et al.; **Nat. Energy**, **5**, 61 (2020)


### Slab and cluster models

**C-H bond breaking** (forming CH<sub>3</sub>, CH<sub>2</sub>, CH, and C fragments) **slow** 



**Periodic DFT (PBE+D3BJ)** with semiempirical van der Waals correction for reaction pathways

Embedding potential from **DFET** 

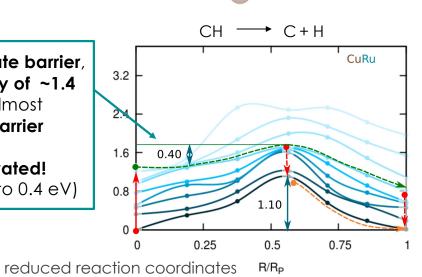


L. Zhou, et al.; **Nat. Energy**, **5**, 61 (2020)

16

### Excited-state C-H bond activation from embedded NEVPT2

First C-H bond breaking most difficult on pure Cu


Fourth C-H bond breaking for Ru single atom on Cu

NEVPT2 using multiconfigurational CASSCF with an active space of (10e,10o) as reference Moderate ground-state barrier,
an excitation energy of ~1.4
eV enough to almost
overcome the barrier

Key: Cu/Ru/C/H

visible light activated!
(barrier from 1.1 eV to 0.4 eV)

 $R/R_{P}$ 



**CASSCF**: H.-J. Werner, Mol. Phys. 89, 645 (1996)

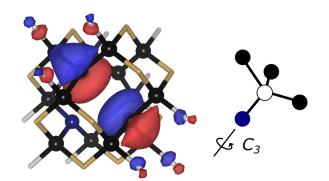
**NEVPT2**: C. Angeli, et al., J. Chem. Phys., 114,10252, (2001)

Relative Energy [eV]

L. Zhou, et al.; **Nat. Energy**, **5**, 61 (2020)

## Summary

**Spin-contaminated DFT** with semi-local (PBE) exchange-correlation functional proved to be **adequate for gas-phase hydrocarbon dehydrogenation** chemistry

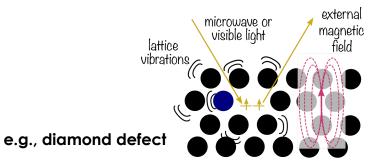

**Spin-unrestricted RPA** show similar performance as DFT for gas-phase rxns., although worse for an open shell transition metal atom (Pt)

**Newer generation XC functional r<sup>2</sup>SCAN-L with rVV10** vdW correction predicts similarly as PBE + D3BJ for  $H_2$  and  $C_3H_x$  adsorption on Pt(111) – does not justify increase computational cost

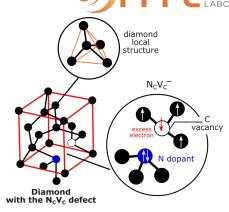
Multireference perturbation theories (enabled by DFET for surfaces) produce the best result across the board – gaseous and surface reactions

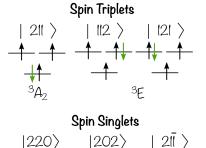
Multireference perturbation theories provide valuable insight into excited-state chemical processes

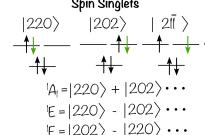
**Surfaces may influence conversion pathways** for excited state species harnessed through plasma or light excitations

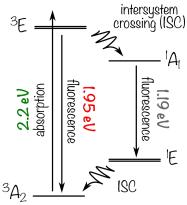



# Using **Quantum Mechanics**For Designing **Qubits**


Optical and magnetic properties of diamond "color centers"


#### **Qubits (quantum bits)**


- Basic units of information in quantum devices that enable computation, communication, and sensing
- Takes advantage of quantum phenomena: electron and nuclear spins, state superposition, & entanglement
- Prepared/manipulated via static magnetic field (energy splitting via Zeeman effect); generate a coherent state (different m<sub>s</sub> sublevels) via microwave (zero-field splitting energy)
- Pumped using visible light excitation
- Probed measuring emission (fluorescence)




Example: negatively charged NV center in diamond







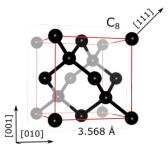


NV<sup>-</sup>triplet singlet states states


Exploring novel "quantum" defects in diamond



#### Diamond


- Wide-band gap (5.5 eV) group IV semiconductor
  - **Diamagnetic** ("nonmagnetic")
  - Can form magnetic defects
  - High breakdown voltage
- Can be made with high purity and precisely placed defects

Ferrenti, A. M., de Leon, N. P., Thompson, J. D. & Cava, R. J., npj Computational Materials 6, 126 (2020)



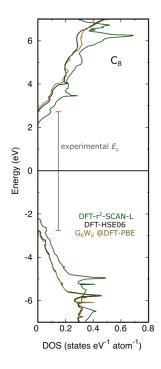
## QM method benchmarking for pure diamond





# Band gap of pure diamond: Different DFT exchange correlation functionals and quasi-particle method vs. experiment

**Table 1**. Predicted lattice constant and indirect band gap<sup>a</sup> for a pristine diamond (C<sub>8</sub> supercell) from different DFT approximations compared to the experimental structure and fundamental band gap.

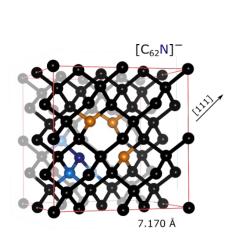

| Method                     | Cubic a (Å)             | E <sub>g</sub> (eV)   |  |
|----------------------------|-------------------------|-----------------------|--|
| Experiment                 | $3.56712 \pm 0.00005^b$ | $5.480 \pm 0.004^{c}$ |  |
| DFT-r <sup>2</sup> -SCAN-L | 3.5677                  | $4.22 \pm 0.02$       |  |
| DFT-HSE06                  | -                       | $5.30 \pm 0.02$       |  |
| G₀W₀ @DFT-PBE              | -                       | $5.50 \pm 0.02^d$     |  |

<sup>a</sup>Difference between the energies of the **conduction band minimum** and valence band maximum

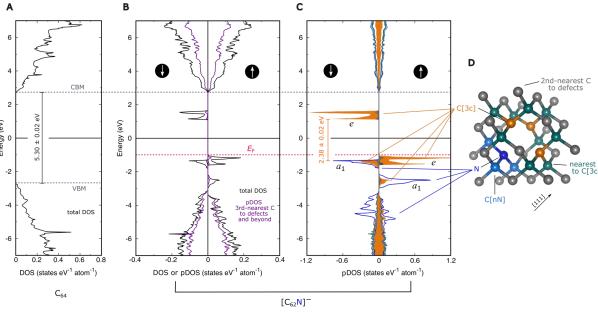
<sup>b</sup>X-ray diffraction at room temperature, Yamanaka, T. & Morimoto, S. Acta Crystallographica Section B 52, 232 (1996)

<sup>c</sup>photoemission-inverse photoemission, Cheng, L., Zhu, S., Ouyang, X. & Zheng, W., Diamond and Related Materials 132, 109638 (2023)

<sup>d</sup>formally corresponds to the fundamental gap




Pure diamond electronic structures (densities of states)


Martirez, arXiv, 2505.01250 (2025)

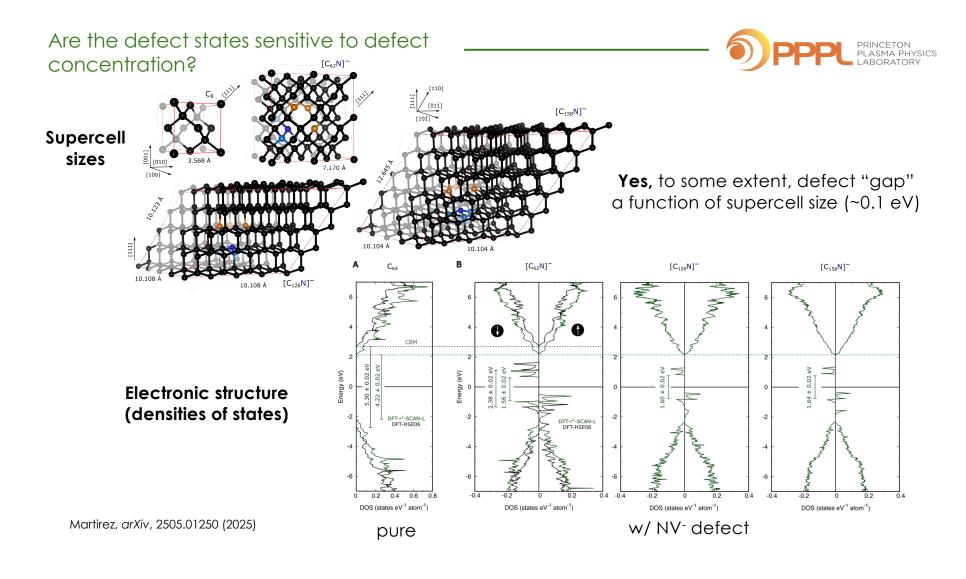
Single-particle picture: DFT-predicted electronic structure of NV- defect in

bulk diamond



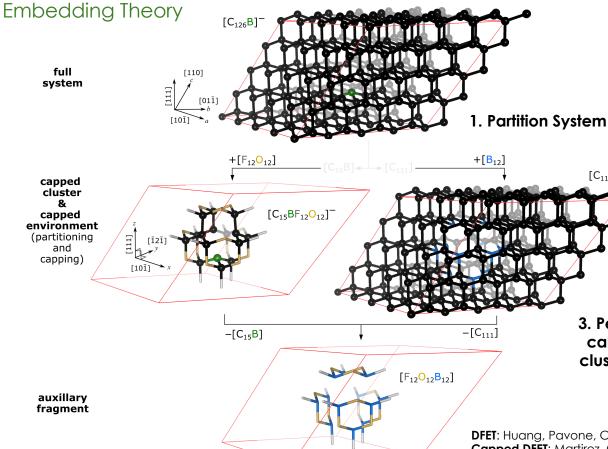
N, C except 3-fold coordinated C (C[3c]) C next to N (C[nN])




Gap states from under-coordinated C atoms: C[3c]

Defect orbital transition: a₁ → e

"Defect gap" (2.38 eV) higher than experimental optical vertical excitation (2.18 eV) and emission (1.95 eV)


Davies, G., Hamer, M. F. & Price, W. C. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 348, 285 (1976)
Ma, Y., Rohlfing, M. & Gali, A. Phys. Rev. B 81, 041204 (2010)

Martirez, arXiv, 2505.01250 (2025)



### Excited-state Property Predictions via

Capped Density Functional





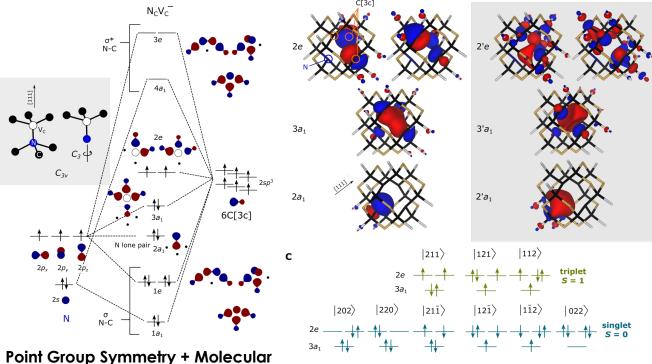
## 2. Optimize an embedding potential

$$\begin{split} W &= E_{DFT}^{cl+cap1}[\rho^{cl}, V_{emb}] \\ &+ E_{DFT}^{env+cap2}[\rho^{env}, V_{emb}] \\ &- \int V_{emb} \left( \rho^{full} + \rho^{cap1+cap2} \right) dr \end{split}$$

$$\begin{split} \frac{\delta W}{\delta V_{emb}(\boldsymbol{r})} &= \rho^{cl+cap1}(\boldsymbol{r}) + \rho^{env+cap2}(\boldsymbol{r}) \\ &- \left(\rho^{full} + \rho^{cap1+cap2}\right) \rightarrow 0 \end{split}$$

$$\begin{array}{l} \rho^{cl+cap1}(\boldsymbol{r}) + \rho^{env+cap2}(\boldsymbol{r}) \ - \rho^{cap1+cap2} \\ = \rho^{full} \end{array}$$

3. Perform correlated wavefunction theory calculations with modified non-periodic cluster Hamiltonian (no slowly convergent Coulomb interactions)


$$H = H^{\circ} + V_{emb}$$
 free of defect-defect interaction

DFET: Huang, Pavone, Carter, J. Chem. Phys. 134, 154110 (2011)
Capped DFET: Martirez, Carter, J. Chem. Theory. Comput. 17, 4105 (2021)
Diamond w/ capped DFET: Martirez, arXiv, 2505.01250 (2025)

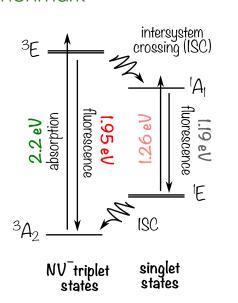
 $[C_{111}B_{12}]$ 

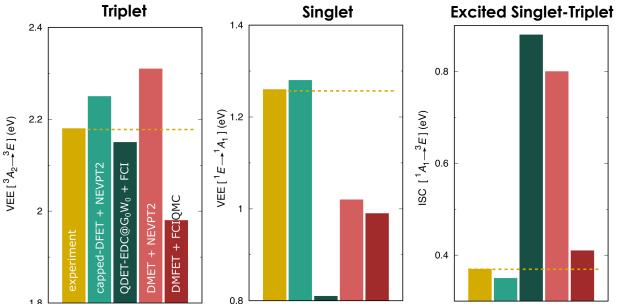
## Molecular orbital picture & multiconfigurational picture





Calculated Natural
Orbitals from
multiconfigurational
CW (verifies frontier
orbital character and
approximate
symmetry)


#### Relevant electronic configurations (illustrates multiconfigurational nature of states)


Orbital Diagram (explains spin structure and frontier orbital character) – molecule-like not atom-like

Martirez, arXiv, 2505.01250 (2025)

Vertical Excitation Energy (VEE) Benchmark







Structures: DFT-r2-SCAN-L

Optimized embedding potential: **DFT-HSE06**Excitation energies: **multistate CASSCF + NEVPT2** 

#### Calculated properties:

Excitation energies, transition dipole moments → relative absorption strength and natural lifetimes, spin-orbit coupling → zero-field splitting

Martirez, arXiv, 2505.01250 (2025)

**EXP**: G. Davies et al., Proc. R. Soc. Lond. 348, 285 (1976); P. Kehayias, et al. Phys. Rev. B, 88, 165202 (2013); M. Goldman, et al. Phys. Rev. B, 96, 039905 (2017) **capped DFET + NEVPT2**: embedded  $C_{15}NF_{12}O_{12}$ ; Martirez, arXiv (2025) **QDET + FCI**:  $C_{510}N$ ; N. Sheng ... G. Galli, JCTC, 18, 3512 (2022) **DMET + NEVPT2**:  $C_{214}N$ ; S. Haldar ... L. Gagliardi, J. Phys. Chem. Lett., 14, 4273 (2023) **DMFET + FCIQMC**:  $C_{42}H_{42}N$ ; Y. Chen ... J. Chen, Phys. Rev. B, 108, 045111 (2023)

Method is accurate and rivals best-in-class!

Performs well across the board

27



- Detailed benchmarking of the capped-DFET method using embedded NEVPT2 using the negatively charged "NV center" in diamond as example
- We found **capped-DFET with emb-NEVPT2** reproduces VEEs and the ISC energy for spin triplet and singlet  $N_CV_C^-$  with **errors less** than 0.1 eV, rivaling more expensive methods
- Confirm and thus establish an accuracy-retaining method that will potentially enable fully ab initio QM characterization of an array of localized defects in diamond that may be key materials as building blocks for quantum devices



## Acknowledgements









Alkane dehydrogenation on Pt: U.S. Department of Energy, Office of Science Energy Earthshot Initiative as part of the Non-equilibrium Energy Transfer for Efficient Reactions (NEETER) under contract # DE-AC05-00OR22725



Methane activation on Cu: AFOSR MURI FA9550-15-1-0022

**Quantum Diamond**: Laboratory Directed Research and Development (LDRD) program under prime Contract No. DE-AC02-09CH11466