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The stability of a plane current layer is analyzed in the hydromagnetic approximation, allowing
for finite isotropic resistivity. The effect of a small layer curvature is simulated by a gravitational
field. In an incompressible fluid, there can be three basic types of “resistive’’ instability: a long-wave
“tearing’”’ mode, corresponding to breakup of the layer along current-flow lines; a short-wave ‘rip-
pling”’ mode, due to the flow of current across the resistivity gradients of the layer; and a low-g
gravitational interchange mode that grows in spite of finite magnetic shear. The time scale is set by
the resistive diffusion time rg and the hydromagnetic transit time nz of the layer. For large § =
7r/Ta, the growth rate of the ““tearing’’ and “rippling’”’ modes is of order rg~3/57¢2/5, and that of the
gravitational mode is of order 7g 1374723, As § — =, the gravitational effect dominates and may
be used to stabilize the two nongravitational modes. If the zero-order configuration is in equilibrium,
there are no overstable modes in the incompressible case. Allowance for plasma compressibility
somewhat modifies the “rippling”’ and gravitational modes, and may permit overstable modes to
appear. The existence of overstable modes depends also on increasingly large zero-order resistivity
gradients as 8§ — «, The three unstable modes merely require increasingly large gradients of the
Jirst-order fluid velocity; but even so, the hydromagnetic approximation breaks down as S — .
Allowance for isotropic viscosity increases the effective mass density of the fluid, and the growth rates
of the “tearing”’ and “rippling’”’ modes then scale as rg~2/3rg~1/3. In plasmas, allowance for thermal
conductivity suppresses the “rippling’’ mode at moderately high values of S. The “tearing’’ mode can
be stabilized by conducting walls. The transition from the low-g “resistive’’ gravitational mode to the
familiar high-g infinite conductivity mode is examined. The extension of the stability analysis to
cylindrical geometry is discussed. The relevance of the theory to the results of various plasma experi-
ments is pointed out. A nonhydromagnetic treatment will be needed to achieve rigorous correspond-
ence to the experimental conditions.

I. INTRODUCTION

PRINCIPAL result of pinch'® and stellarator®
research has been the observed instability of
configurations that the hydromagnetic theory*®
would predict to be stable in the limit of high

1 8. A. Colgate and H. P. Furth, Phys. Fluids 3, 982 (1960).
2 K. Aitken, R. Bickerton, R, Hardcastle, J. Jukes, P.
Reynolds, and 8. Spalding, IAEA Conference on Plasma
Physics and Controlled Nuclear Fusion Research, Salzburg,
Austria, (1961), paper 68.
3 W. Stodiek, R. A. Ellis, Jr., and J. G. Gorman, Nuclear
Fusion Suppl., Pt. 1, 193 (1962)
+1.B. Bernstem, E A Frieman, M. D. Kruskal, and R. M.
Kulsrud Proc. Roy. Soc. (London) A244, 17 (1958)
5 W. 'A. Newcomb and A. N, Kaufrnan, Phys. Fluids 4,
314 (1961).

electrical conductivity. In order to establish the
cause of this observed instability, the extension
of the hydromagnetic analysis to the case of finite
conductivity becomes of considerable interest.

A number of particular ‘‘resistive’”’ instability
modes have been discussed in previous publications.
Dungey® has shown that, at an z-type neutral point
of a magnetic-field structure in plasma, finite
conductivity can give rise to an unstably growing
current concentration. By Dungey’s mechanism, a
sheet pinch can tear along current-flow lines, so as

6J. W. Dungey, Cosmic Electrodynamics (Cambridge
University Press, New York, 1958), pp. 98-102.
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to form discrete parallel filaments.”"® This “tearing”
mode is purely growing and is symmetric about the
midplane of the sheet pinch.

Murty® has analyzed the case of a very-low-
conductivity incompressible fluid slab of finite
thickness, and has found two purely growing modes:
the symmetric “tearing’”’ mode; and an asymmetric
“rippling”’ mode. In the latter case, the conductivity
gradient at the edge of the slab permits current
channeling into first-order “ripples” that run at an
angle with respect to both the zero-order current and
the zero-order magnetic field. The resultant motor
force amplifies the ripples.

Aitken et al.”''° have treated eylindrical geometry,
and have found a purely growing (helical) ‘“rippling”
mode in the very-low-conductivity limit. In the
high-conductivity limit, they find an overstable
“rippling”’ mode.*’' The ripples in the latter case
run in the direction of the mean zero-order current.
The existence of overstability depends on the
compressibility of the fluid and on large resistivity
gradients.

The instability of the positive column is
somewhat related to the instability of fully ionized
plasmas of finite conductivity. Kadomtsev and
Nedospasov'* have demonstrated a “rippling” mode,
which is purely growing in the rest frame of the
electrons, but is overstable in the laboratory frame.
The extension of this mode to fully ionized plasmas
has been considered by Hoh,'”® Kuckes,'® and
Kadomtsev."”

In the present analysis, general equations are
derived for the plane resistive current layer in the
incompressible hydromagnetic approximation. A
dispersion relation is obtained in the limit of high
conductivity that desecribes purely growing modes
of the “tearing” and ‘rippling” types. An inter-
change mode driven by a gravitational field per-
pendicular to the plane layer is also included.

The analysis for the plane current layer is partic-
ularly significant in the high-conductivity limit,
since the problem then separates into the analysis

12,13

7 H. P. Furth, Bull. Am. Phys. Soc. 6, 193 (1961).
( 8 J5 Killeen and H. P. Furth, Bull. Am. Phys. Soc. 6, 309
1961).

9 G. S. Murty, Arkiv Fysik 19, 499 (1961).

10 K, Aitken, R. Bickerton, S. Cockroft, J. Jukes, and
P. Reynolds, Bull. Am. Phys. Soc. 6, 204 (1961).

11 J, D, Jukes, Phys. Fluids 4, 1527 (1961).

12 F, C. Hoh and B. Lehnert, Phys. Fluids 3, 600 (1960).

13T, K. Allen, G. A, Paulikas, and R. V. Pyle, Phys. Rev.
Letters 5, 409 (1960).

1 B. B. Kadomtsev and A. V. Nedospasov, J. Nuclear
Energy, Part C, 1, 230 (1960).

5 F. C. Hoh, Phys. Fluids 5, 22 (1962).

16 A, F. Kuckes, Phys. Fluids (to be published).

17 B. B. Kadomtsev, Nuclear Fusion 1, 286 (1961).
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of two regions: (1) a narrow central region, where
finite conductivity permits relative motions of field
and fluid, and where geometric curvature may be
neglected; (2) an outer region, where field and fluid
are coupled as in the infinite-conductivity case,
and where generalizations to nonplanar geometry
can be introduced as desired.

In Sec. II the problem is delineated and the
basic assumptions and equations displayed. In
Secs. III-V a formal mathematical solution is
developed. Tn Sec. VI the basic physical mechanisms
are discussed and a simple heuristic derivation and
summary of the results is given. For those not
interested in mathematical details or preferring a
preliminary physical discussion, it is suggested that
Sec. VI be read prior to Secs. ITI-V. Section VII is
devoted to a comparison with experiment. The
effects of various generalizations and extensions
of the basic problem are considered in the appendixes
as follows: Appendix A. Compressibility; Appendix
B. Low-Conductivity Limit; Appendix C. Short
Wavelength; Appendix D. Long-Wavelength Limit;
Appendix E. The Transition to the «-Conduectivity
Limit of the Rayleigh-Taylor Instability ; Appendix
F. Thermal Conduectivity; Appendix G. External
Conductors; Appendix I. Viscosity; Appendix I.
Cylindrical Geometry.

II. ASSUMPTIONS AND BASIC EQUATIONS

We treat an infinite plane current layer specified
by

B, = £B.o(y) + 2B..(y) ey

The following assumptions are made.

1. The hydromagnetic approximation is assumed
to be valid, and the ion pressure and inertia terms
are neglected in Ohm’s law.

oB/ot = V x(vxB) — V x[(5/47)V xB]. (2)
As the analysis will show, these assumptions are
violated in the treatment of a plasma of sufficiently
high conductivity, since the “resistive’” modes then
develop increasingly sharp discontinuities, and we
must expect “finite-Larmor-radius” effects. Plasma
stability in the limit of high but finite conductivity
(the limit of maximum practical interest) thus
depends critically on nonhydromagnetic effects.
An isotropic resistivity 7 is assumed in Eq. (2),
and the mass of the electrons is neglected. It is of
interest to note that inclusion of the electron-inertia
term in Ohm’s law gives rise to a “tearing” mode in
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the collisionless limit'® that is analogous to the
“resistive tearing”’ mode considered here.
2. The fluid is assumed to be incompressible.

Vv =0 3

In the high-conductivity limit the effect of com-
pressibility on the fluid dynamics is negligible.
(See Appendix A.)

3. Viscosity is neglected, so that the equation of
motion may be written as

V x(pdv/di) = V x[(1/4m)(V xB) xB + gp] (4

where p is the mass density and g the acceleration
due to gravity. As usual, the gp term may be
interpreted as resulting from acceleration of the
current layer, or from the interaction of a plasma
pressure gradient and a slight curvature of the
current layer.'® The effect of viscosity is discussed
in Appendix H.

4. Perturbations in plasma resistivity are assumed
to result only from convection.

dn/at + v-Vn = 0. (5)

The neglect of thermal conduectivity along magnetic
field lines, however, becomes important for a
high-temperature plasma,'” and we must then use
the equation

”B v(“B VF) . (59

+ v'Vn =
where « is the coefficient of thermal conductivity
along magnetic field, n is the particle density, and
T the temperature. The associated stabilizing effect
against the “rippling’”’ mode is discussed in Appendix
F. The neglect of Ohmic heating in Eq. (5) is
unimportant in the high-conductivity short-wave-
length limit. For low-conductivity plasma, a small
amount of Ohmic heating due to first-order currents
tends to accelerate the “rippling”” mode and retard
the “tearing” mode. If the Ohmic heating is suffi-
ciently strong to reduce the local electric field at a
current concentration, a trivial type of ‘‘tearing”
instability results that depends primarily on thermal
rather than fluid transport effects. The effect of
plasma compressibility on Eq. (5) is discussed in
Appendix A.

5. Perturbations in gp are assumed to result only
from convection

o(gp)/0t + v-V(gp) = 0. (6

In the presence of a neutral background gas, the

18 H. P. Furth, Nuclear Fusion Suppl., Pt. 1, 169 (1962).
13 M. N. Rosenbluth and C. L. Longmire, Ann. Phys.
N.Y. 1, 120 (1957).
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first-order currents may, however, give rise to an
additional density perturbation by an increase in
the local rate of ionization. This mechanism may
have a destabilizing effect.””'*" The effect of com-
pressibility is discussed in Appendix A.

6. The zero-order distribution will be assumed
to have v, = 0. Strictly speaking, this condition
implies

V %x(n,V xBy) = 0 )

which will be referred to as the standard case.
For modes with sufficiently large growth rates and
wavelengths, however, the approximation of null
zero-order velocity is valid even if Eq. (7) is not
strictly satisfied, since the values of v, to be ex-
pected are those of ordinary resistive diffusion. Some
of our results will therefore be presented in their
most general form, without invoking Eq. (7).

Denoting perturbed quantities by the subseript 1,
fur, ) = fi(y) exp [ik.x + k.2) + wi]
we obtain to first order the set of equations
= V x (v, xB,)
— (1/4m)V % [2V xB, + 7,V xB,],  (8)
wV xpv, = V % {(1/45){(B,- V)B,
+ B+ V)Bo] + @01},  (9)

Vv, = VB, = (10)
wy + (vi+ Vg, = 0, (11)
w(gp); + (Vi V)(gp)o = 0. (12)

From this set of equations, we may separate two
that involve only B,, and v,,. Equations governing
the remaining first-order quantities (not needed in
the present analysis) are given in Appendix A.
In dimensionless form, we have

g_ w 7 )
¢< a>+a( + ) (13)
B ;- 86| P (E )]
o 14 P \7 mp

F_ﬂ)
p )

+ \052(;

(14)

where
v = B,,/B, W =
= (k.B.o + k.B.o)/kB, = (K + k),

= k’a’ TR = 4770’2/(71); ™H = a(47r(p>)%/B,

20 C, L. Oxley, General Atomic Report GAMD-2635 (1961).
21§, A. Colgate (private communication).

- ivylllcrlt ’
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B

(a) (b)

Fia. 1(a) Equilibrium configuration of sheet pinch. (b)
Form of the perturbation.

S = TR/TH;
/‘5 = Po/(p),

Pa= @tr, 7= m/(n),

G = thA,.

The primes denote differentiation with respect to a

dimensionless variable u = y/a, where a is 8 measure
of the thickness of the current layer. The quantities
B, (), and (p) are measures of the field strength,
resistivity, and mass density respectively. The
quantity A, may be interpreted as —(g/po) 9p0/0y
for the gravitational-field case; or as —(1/p,)
d{poto) /0y for a current layer with zero-order
acceleration #,; or very roughly as — (1/72)(a*/4R,)
8B,/ 3y for a current-layer of mean radius of magnetic
curvature R, and plasma pressure P,, where 8, =
4xP,/B®. The latter application is discussed in
detail in Appendix 1.

For thermal plasmas, we have approximately
S ~ 0.1aT°8;*, with T in eV. The parameter S
exceeds a2 hundred for most present-day hot-plasma
experiments and must become much larger yet in
experiments of thermonuclear interest. Accordingly,
our primary interest will be in the case S — o,
Note that the growth rate p is expressed in units
of the resistive diffusion time.

Only one component of the B, field, namely
k(k-B,) appears in Eqgs. (13) and (14). For any
given B, field having finite shear, we may choose
k so that k-B, ~ F passes through a null. The
typical p-dependence of F and # that will be con-
sidered here is illustrated in Fig. 1(a).

The zero-order equilibrium condition of Eq. (7)
may be written as

(#/F = (1)

The usual boundary conditions are that both ¢
and W should vanish at infinity or at conducting
boundaries, located at u = u;, u,.

~F".

III. GENERAL REMARKS

Nonexistence of Overstable Modes

Equations (13) and (14) can be solved in the limit
S — o, to give an oscillatory mode [Re (p) = 0].

H. P. FURTH, J. KILLEEN, AND M. N. ROSENBLUTH

Expanding about this solution in powers of S7',
one finds that, when Im (p) # 0, either Re (p) =
O(1) (so that the growth rate is insignificant);
or else the zero-order current layer must have sharp
resistivity gradients, which become increasingly so as
S — . In a more general analysis, including
plasma compressibility, etc., we would expect the
same result. This follows since the equations can
always be expanded in powers of 87, as long as
the zero-order conductivity is large everywhere and
has finite gradients. Thus the modes of greatest
practical interest are new modes that do not exist
at all for § = =, The situation is similar to that for
hydrodynamic shear-flow stability at high Reynolds
number,** ‘

In the incompressible case, we can show that no
overstable modes exist at all, provided that non-
equilibrium zero-order configurations are excluded
by requiring Eq. (7) (or 15) to be satisfied. This
condition is appropriate for econfigurations with
sharp resistivity gradients, since the zero-order dif-
fusion velocity could not otherwise be neglected.
For convenience, we will use a definition of the
quantity {n) such that 4F’ = 1. Equations (13),
(14) can then be rewritten in the form

2 ) ZG B
&7%27 [(ﬁW')' + W(“_pz— - p)]

= v +wp(pr —57) e

= py/’ — pxb(of + %) (17

Equations (16) and (17) yield the condition
fnz d“{ p2 B l:ﬁ IW,IZ + o lW'Z (ﬁ _ ﬁ@)]
" " &*8° p’

pF’ — F"/F o ( . F"') 2
’pF/ - F,,/Flz ¢ \L’ @ + F

+ il + (e + 5 o

Taking the imaginary part of Eq. (18), we find
that if Im (p) = 0, then Re (p) < 0.

+

(18)

Characteristics of Unstable Modes

We will devote primary attention to those un-
stable modes for which S — « and p ~ S° where
0 < ¢ < 1. The lower limit on { corresponds to a
growth rate that is of the same order as the rate
of resistive diffusion, and is therefore insignificant.
The upper limit on ¢ is reached only by modes that
exist also in the standard infinite-conductivity
treatment.
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Since the growth rates of the modes to be con-
sidered are slow compared with the hydromagnetic
rates, the flow is subsonic; i.e., the incompressibility
approximation is satisfactory (cf. Appendix A).
On the other hand, since the growth rates are fast
compared with resistive diffusion rates, the effect
of Ohmic heating is negligible.

A discussion of unstable modes in the limit
S — 0 is given in Appendix B. It is shown that in
this limit the growth rates approach hydromagnetic
rates.

For unstable modes, all quantities in Eq. (18)
are real. In the limit § — o, Eq. (18) can be
satisfled in three distinet ways, each corresponding
to a negative contribution from one of the three
terms: (1) if G > 0, there can be gravitationally
driven modes; (2) if ¢ is peaked near the point
F = 0, and if we can have F"//F > 0 at this point
(ie., if »n° # 0 there), then there are modes cor-
responding to the ‘“rippling” instability; (3) since
F"/F is predominantly negative, for sufficiently
small o’ there are modes corresponding to the
“tearing” instability.

The behavior of the solutions over most of the
range in u can be established on a general basis.
As § — o, we must have

Yy =~ —FW (19)

everywhere except in a small interval near F = 0.
This condition follows from the consideration that
either W or ¢ would diverge strongly at large u if
the right-hand term in Eq. (16) were either negative
or positive except in a small interval. Eq. (19) is,
of course, the condition that the fluid remains
“frozen’” to magnetic field lines.

Using Eq. (19), we then see from Egs. (16) and
(17) that the (infinite-conductivity) equation

V' — Y + F/F — G/F”) =0 (20)

must be satisfied everywhere except in a small
interval. The general procedure in the S — ,
0 < ¢ < 1 limit is therefore as follows. We obtain
solutions to Eq. (20) that vanish at u = uy, pa
the external boundaries. These solutions cannot,
in general, be joined without a discontinuity in ¢/,

AN = 'Pé/'/’z - \l’{/\bl; (21)

where the subsecripts refer to values on either side
of the point of juncture. The typical behavior of
¢ is illustrated in Fig. 1(b). The discontinuity in
¥’/ corresponds to large local values of ¢/, From
Eqgs. (16) and (17) we see that such values can be
obtained only near the point F = 0. Equation (13)
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implies that large local values of W are also obtained
near the same point and only there. The second stage
of the general solution therefore consists in solving
for ¢ and W in a small region R, about the point
F = 0, with the boundary conditions that ¢'/¥
matches the solutions of Kq. (20), and that W is
well behaved outside the region R,.

In more formal terms, we may say that Egs. (19)
and (20) provide an asymptotic solution of Eqs. (16)
and (17), which breaks down near F = 0. We note
that if F » 0 everywhere, then Eq. (20) applies
throughout, and there is no solution unless G/ (F’)* =
O(1), in which case the layer is unstable even in the
S = o limit.

The argument of this section has, for reasons of
convenience, made use of Eqs. (16) and (17), which
refer specifically to the standard case [i.e., Eq.
(15) holds]. The conclusions can, however, be
extended to more general choices of F, if desired.

IV. SOLUTIONS IN THE OUTER REGION

We assume that Eq. (20) holds everywhere
outside a small region R, with a width of order ¢,
around the point u, at which F = 0. Eq. (20) is to be
solved subject to the boundary condition ¢ = 0
at the points u,, ., which we will take for con-
venience at Fo. We will calculate the quantity
A" of Eq. (21) for the case ¢, = ¥, which is of
principal interest in Sec. V. Equation (20) yields
the expression

! — _l_ “ —alpl B’_
A——2a—¢[due 1[/F

+ o g |

Note that when F'’ # 0 at u,, there is a singularity
in the integrand on the right side of Eq. (22).
Difficulties arising from the corresponding loga-
rithmic singularity in ¢ are avoided here, since we
consider only A’ instead of the individual values
of ¢ and ¢§. In this and the following section we
will restrict ourselves to the case where |G|/(F’)? is
sufficiently small so that the G term in Eq. (22)
can be neglected. The case of larger G is discussed
in Appendix E.
For the case a® >> 1, one obtains from Eq. (22)

A = —2a + O(1/a). 23)
For the case o” < 1, we expand
v = e_al"_m(‘l/w) +apay + Y -0 0)
and find
—(YwF" — Yy F) =

(22)

[2“‘ - #0'/(# — w)IF Yl .
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The well-behaved solution is characterized by
Yo = |F|
and near the point g, by
Yoy = F2o/F’, 4 < po; Yoy = Fo/F', > po. (25)

In calculating A’, the derivative of ¢, may be
neglected, though it has a logarithmic singularity
at e, since the contributions it makes near pu,
cancel out, and the rest is of order «. Thus we obtain

A = (1/a)(F)'(1/F2. + 1/F2). (26)

In the case of symmetric F”//F, it will be of interest
to obtain A’ for arbitrary . For this purpose it is
convenient to choose specific models. When

F = tanh p, 27

then Eq. (20) may be solved explicitly in terms of
associated Legendre functions, and we have

(24)

A" =21/ — a). (28)
When
F =y, ’:U'l<1; F=1, p>1; (29)
F= -1, p< —1;
we have
,_ JJa=a = atanhail‘
AT = 2a|:a — (1 — @) tanh « (30)

Note that A’ goes monotonically from o to —
as o goes from 0 to o, There is a null of A’ at the
point @ = a,, which occurs at 1 and 0.64 respectively
for the models of Eqs. (27) and (29).

V. SOLUTIONS IN THE REGION OF
DISCONTINUITY

Basic Equations

In the small region R, about the point u, we may
take the quantities F/, F”', 4, 7', G, and j in Egs. (13)
and (14) to be constant. We may approximate F
as F'(u — uo) and neglect the term §'W' relative
to sW".

Defining a new independent variable

0= (/e — no + 7/2p), (31)
Eqs. (13) and (14) may be written as
d’Y/de* — o’y = Qdy + U + 8)],  (32)
d*U/d6" + UA — 16°) = (6 — 9),  (33)
where
e = [pip/4e’ S'F)T, (34
U = W4eF'/p), - (35)

AND M. N. ROSENBLUTH

Q = pe/dn, (36)

& = (L/4Q)(F"/F" + 7 /2%), (37

& = (1/80)(7"/%), (38)

A = (7)%/166p° + S°°EG/p°s — o’é. (39)

Note that in the standard case [cf. Eq. (15)] we
have § = —4,.

Let us expand U in terms of normalized Hermite
functions

U= E Ay, (40)
n=0
where
"u,/d0* + (n + % — §6°u, = 0 (41)
and
u, = (_:D__ %B’i -2 (42)

T @)’ 4o’
Then Eq. (33) can be written in the form

I S ~
= Ty L e~ 9. @)

Equations (32) and (33) are valid over the range
(v — po)® K 1. We will apply these equations over
a region R, of width e, outside of which Eqgs. (19)
and (20) are to be valid. From Eqgs. (32) and (33) it
follows then that we must require ¢, > e.

The most important class of unstable modes
corresponds to the approximation y = const in R,.
For this case we obtain the “tearing” and “rippling”’
modes over a range of « consistent with € |¢//¢ | < 1
in R,, or roughly

0 |AT] < 1. (44)

Using the requirement ¢, > ¢ and the results of
Eqgs. (23) and (26), we may rewrite Eq. (44) as

(FY(1/F2, + 1/F%) < a < 1/2¢

For ¥ = const in R, we also obtain the low-G
gravitational interchange mode. Sufficient condi-
tions for the constancy of ¥ and for the negligibility
of the G term in Eq. (20) are provided by Eq. (44a)
together with the requirement that |[G|(F’')™* be
small compared with ¢, or compared with € |A’|
when |A’| >> 1. In Appendix E, we will show that
the condition on @ can in general be relaxed con-
siderably. We may take ¢ to be constant over
& = (1 + |A)7'. Then the G term in Eq. (20)
will be small (when G > 0), provided that we have

G/(F) < % (45)

(44a)

and
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G/(F..) < . (45a)

We note that Eq. (45) is equivalent to the well-

known Suydam criterion for instability of an

infinite-conductivity plasma at short wavelengths.
Solutions with Constant y

If ¥ = const and Eqs. (44) and (45) are satisfied,
we obtain from Eqs. (32) and (43)

oY ’ P 1
= Q"E,oét[‘/‘_wdelun:l +A—(’ﬂ+%)

[f dé, un(01 + 51)][f dé, un(ez - 5)] (46)
Using the integrals
© T(ip 4+ 1
f_w de, u, = 2‘: E; %2—;] (n even);
=0 (n odd);
f do, du, = 0 (n even),
rdn+ D[
— 29/4[____2_________ R
Tn + py oW
we obtain the eigenvalue equation
7/2 P(m + 2)
-2 i )
. A-% 86,/4 ] ,
[A “Gm+d a-emt+pl @
where A’ is determined by the “outside” solutions

(cf. Sec. 1V). We have replaced even n by 2m and
odd n by 2m + 1. The series is convergent, since
terms for large m go like m™!. [Note, however,
that if we had ecalculated ¢ |5, we would have
obtained a divergent result, proportional to

— %) Z =
m=0
Since (8, — &) ~ F"/F’, and §° ~ m, we may
identify this divergence with the logarithmic
singularity indicated by Eq. (22).]
The sums can be evaluated as hypergeometric
series of argument 1 to give

_ oT/2 P(4 - IA) éﬂ F(4 - %A) i .
=2 ”Q[m “iy T s TE - %AJ (47a)

A form that is sometimes more convenient is

vy - 1)

_ 7r29/29 F(% - l_‘

ra -4
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The following general remarks can be made
about the solutions of Eq. (47).

1. If 85, < O (the most common case), then A'/Q
goes from ® to — o as A goes from 3 to §, from
2 to 2, etc. The quantity Q, related to A by Eqgs. (36)
and (39), is finite for finite A. Hence for any given
A', as obtained from Eq. (21), there is an infinite
sequence of eigenvalues A ~ 1, 2, 3, . There is
also an eigenvalue below %, which moves to 0 as
A’ — «, while Q becomes large.

2. If 86, = 0 then A’/Q goes from « to —
as A goes from 2m + % to 2m —|— . The sequence
of eigenvalues is A ~ 2, 4,6 --- . There is also an
eigenvalue below 3.

3. If 0 < 88, < A then A'/Q covers almost the
entire range from © to — « as A goes from 2m + §
to 2m +7% . The excluded interval is

|A7/Q] < 4x(85,)%. (48)

For A’/Q outside the excluded interval, there is
also an eigenvalue below 2.
4. When |A| < %, Eq. (47) reduces to

= (12 + 13 84)). (49)

In that case Q@ is to be determined by the value
of A’ in Eq. (21), and the condition on A is to be
verified by means of Eqgs. (36) and (39). Evidently
this case arises only for positive A’

We can now identify a number of basic modes.

The ‘‘Rippling” Mode

The “rippling” mode is characterized by the
finiteness of A and the predominance of the (7')°
term on the right side of Eq. (39). In that case

i

Q = [7']/1674%, (51)

= 2A%, (52)

e = |i'|/4pAL. (53)

In the standard case we have 86, = —4A, and the

remarks made above in paragraph 1 then apply to
the A speetrum. (For other reasonable choices of
88, < 0, the A spectrum is modified only slightly.)

In the limit « >> 1, which according to Eq. (23)
corresponds to large negative A’, we find that the
elgenvalues A lie slightly below the points 1, %,
2, -+ . For the fastest growing mode, which cor-
responds to a solution U that is basically symmetric
near u,, we have A & }. As we move towards the
other limit, & <« 1, (i.e., large positive A’) the
eigenvalues that were slightly below 3, §, --- move
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to points slightly above %, %, --. . The fastest
growing mode of this series again occurs for A & £,
and corresponds to a basically symmetric U in the
neighborhood of o From Eg. (50) we see that the
growth rates of these modes become small as a — 0.
The eigenvalue lying below % moves toward 0 as
a — 0. This mode goes over into the “tearing’”’ mode
(see below); the associated U becomes antisym-
metrie, and the growth rate becomes large as a — 0.

If we depart from the standard case and consider
the limit 6 = 0, §, = 0 (cf. paragraph 2), the eigen-
values near %, §, §, --- disappear. If §6, > 0 (cf.
paragraph 3), there is no solution for |A'] < 1,
but for large or small «a there are eigenvalues near
%7 2 ’2'; e

Using Eqs (50) and (53), we may express the
condition of Eq. (44) as
l: ~a (F’) ( 1 1)5:|1/7 I:SZ(F,) A;:r

165°A%7 ) FI ) < efles J
The behavior of the “rippling” mode for larger
a is discussed in Appendix C.

As we have noted in Sec. II, paragraph 4, the use
of Eq. (5) to give the first-order resistivity becomes
inaccurate for a high-temperature plasma, where
thermal conductivity along magnetic field lines is
highly effective. For the “rippling” mode, which
depends critically on the nature of the resistivity
perturbation, the growth rate is then actually much
smaller than would be indicated by Eq. (50).
An estimate of the correction factor is given in
Appendix F.

The stabilization of the “rippling” mode by

gravitational effects is discussed in the section on
the gravitational mode.

The “‘Tearing” Mode

The ‘‘tearing’” mode is characterized by the
condition {A] << 1 (cf. paragraph 4). Eq. (49) shows
that this mode is limited to positive A/, i.e., to
a < o, ~ 1 [ef. Egs. (28) and (30)]. The growth
rate is obtained from Eqgs. (34) and (36):

= 4875t [F])*; (54)

and the condltlon on A can be expressed by means
of Eq. (39):

1
A= —[(1617) + e (F) ]« 1. (59
For a < 1, we have from Eqs. (26) and (49)

so that
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2/5 4/5
p=er(Gen) (v - o
The fastest growing mode is generally obtained for
the “symmetric case’” where F' = 0 at F' = 0.
A lower limit to « is set by Eq. (44)

~ =} [ r19\1

«> (F%_m + Fij)(np&&g ) :

The maximal growth rate p, thus goes as S

(Appendix D treats this limit by a method that

avoids the constant —y approximation but confirms
the present result for p,,.)

If the current layer is perfectly symmetrie, so that
the nulls of 4" and G occur at the same point u = 0,
Eq. (565) is always satisfied for a mode where y, =
More generally, we see that the (")’ term in Eq. (55)
is always negligible for @ << 1. The effect of the
gravitational term when G # 0 at p, is discussed in
the next section.

For modes of the “tearing” type, the solution U is
basically antisymmetrie, since the 7 terms can
usually be neglected by symmetry or because a < 1.

(58)

The Gravitational Interchange Mode

The gravitational interchange mode is char-
acterized by the finiteness of A and the predominance
of the @ term on the right side of Eq. (39). Instability
is obtained for G > 0, and the appropriate growth
rate is

= (SaG7t/2A [F'| ). (59)

The magnitude of G for which Eq. (59) holds is
restricted by Eqs. (45) and (45a).

To evaluate A, we note from Egs. (36) and (39)
that Q is given by

2 = G/16eA(F").

For 66, < 0, Eq. (47) gives a series of eigenvalues
A lying in the intervals % to £, £ to §, etc. There may
also be an eigenvalue in the interval 0 to %, if A’/Q
is not too large. Unless G(F’)™* is of order ¢ or less,
the quantity Q is generally very large, so that
|A")/Q, |88,] < 1. In that case the eigenvalues lie
at %, %, §, ete.

If 86, = 0, there is a series of eigenvalues lying
in the intervals £ to %, ¥ to %%, etc., and there
may also be an eigenvalue in the interval 0 to %,
if A’/Q is not too large. For |A'|/Q < 1, we have
A = %, 3, 3, ete. These eigenvalues are obtained for
example, for pure gravitational modes with G(F’)~*
finite as § — =,

We now consider the effect of the G term on the
growth of the “rippling’”’ mode. The condition that
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the resistivity-gradient term should be dominant on
the right side of Eq. (39) is

p < (F)(F')/47 |G| (60)

so that, unless G = 0, the gravitational term always
predominates in the limit § — o, p — «. If @ > 0,
then instability continues above the limit set by
Eq. (60) in the form of gravitational modes or
naixed “‘gravitational-rippling” modes. If ¢ < 0,
there are no gravitationally driven modes, and
Eq. (60) then sets an upper limit to the growth
of all short-wave interchange instabilities.

We next consider the effect of the G-term on the
growth of the ‘“tearing” mode, neglecting the
resistivity gradient terms (cf. the preceding section).
Using Egs. (34), (36), and (39) we find that

p = £LACHEF)/G. (61)

If G > 0, then the “tearing”’ mode, which is char-
acterized by A < % and by the consequent applic-
ability of Eq. (49), is restricted by the condition

p < 27(A7)(F')*/9G. (62)

As S — =, p — =, Eq. (62) is violated, A moves up
toward %, and we have the gravitational or mixed
“gravitational-tearing”’ mode. If G < 0, then A is
negative, and Eqs. (47) and (61) yield the condition

p < #(A)(FY/17 16| (62a)

in the limit 8§ — «. Eq. (62a) then sets an upper
limit to the growth of long-wave instabilities.
[We note that in the present analysis the quantity
G(F')™* is limited by Eq. (45a), so that for extremely
small @ Eq. (62a) is not very restrictive.]

We may summarize the gravitational effects
qualitatively in terms of four characteristic ranges
of G.

I. @ < 0. The gravitational force is stabilizing.
For finite |G|(F’')™" essentially all the resistive
instabilities are suppressed in the limit § — o;
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i.e., we have p ~ S° for the “rippling”’ and “tearing’’
modes.

II. @ = 0, or at least GS*® < 1. In this case
we may have the pure “rippling”’ or ‘“‘tearing’’ modes
with p ~ S*°.

III. G > 0, but not large enough for infinite-
conductivity instabilities, In this case we have
p ~ Sh

IV. @ > 0 and large enough for infinite-con-
ductivity instabilities; i.e.,, G(F’)™* > 1 for short-
wave modes. In that case, of course, p ~ S.

VI. SUMMARY AND ELUCIDATION OF PRINCIPAL
RESULTS

In the high-8 limit, a current layer with finite
gradients has three basic unstable modes and no
overstable modes. The approximate properties of the
unstable modes in their characteristic parametric
range are summarized in Table I. Here it has been
assumed that the dimensionless quantities F’, F"”,
ete., are all of order unity. References are given to
the more exact equations of the main text, and to
supplementary material that more clearly defines the
range of validity of the analysis and extends it
somewhat. We will now discuss and rederive the
modes of Table I in heuristic terms.

The existence of the three ‘“‘resistive’” instabilities
depends on the local relaxation of the constraint
that fluid must remain attached to magnetic field.
For a zero-order field that is not a vacuum field,
possibilities of lowering potential energy are always
present; the introduction of finite conductivity
makes some energetically possible modes topologi-
cally accessible. In the case of the infinite-conduc-
tivity modes, lines of force that are initially distinct
must remain so during the perturbation. For the
three “‘resistive’” modes, lines of force that are
initially distinet link up during the perturbation.
These modes have no counterpart in the infinite-
conductivity limit and disappear altogether, their

TasrLe I. Summary of approximate properties of unstable modes in the high-S limit.

Range of Growth Region of Relevant Valid Range of Supplementary
Mode Instability Rate p Dise. « Equations Equations Equations
I / (60)
s :
“Rippling” i %0 258215 a—tisg-2ls (50)~(53) ‘]SGI <<a(—12/§S'§22/53 AApPénglxI(_eIs
—1/4 (62)’
“Tearing”  a <1 o sgs a sS85 (54)-(58) PRSI Appendixes
2 3 2
Gravitational _ .
/s SLAGIE < o < Sr2G-11 (60)—(62)
13921/3(}213 113 1/3¢71 /1
Interchange G>0 a?3828@G a 188718 s (69) G<1,a Appendixes
A, CEHI

G > (2_2/5S_215, a—slss—-z/s
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F1e. 2(a) Perturbed fields and velocities—‘rippling” mode. Solid arrows indicate fluid velocity. (b) Perturbed fields and
velocities—‘tearing’”’ mode. (¢) Perturbed fields and velocities—gravitational mode.

characteristic times becoming infinite. The situation
is quite analogous to the new modes which occur in
hydrodynamics when the constraint of conservation
of vorticity is removed by the presence of finite
viscosity.

The growth rates of the ‘resistive’” modes are
sufficiently small on the hydromagnetic time scale so
that the fluid motion is subsonic, i.e., incompressible.
This feature is of critical importance in simplifying
the analysis of the plane current layer: it permits
us to consider the magnetic-field and velocity
components within the ky plane independently of
the components in the direction 7 normal to the
ky plane. The reasons for this decoupling effect
are readily seen.

The coordinate along # is ignorable; therefore,
the field lines of the component B, in the 7 direction
are not distorted during the perturbation. The only
manner in which the magnitude of B, could affect
the motion in the ky plane is by way of the magnetic
pressure B;/8r. The gradients of this pressure,
however, merely tend to induce plasma compression
or expansion. An incompressible fluid automatically
provides compensating hydrostatic pressure gra-
dients, so that there is no net effect on the dynamics.
As for Ohm’s law, there the resistive diffusion term
does not couple the field components if the resis-
tivity is isotropic, and the convective term couples
the magnetic field and velocity components within
the ky plane to each other. Finally, the two equations
specifying B and v to be solenoidal hold as well for
the vector components in the ky plane taken alone.
Thus we have four equations for two unknown
two-component vectors, and we may restrict
ourselves in what follows to the analysis of the
two-dimensional problem. Typical field and velocity
components in the ky plane are illustrated in Fig. 2.
We note parenthetically that the convenient re-
ducibility of the three-dimensional finite-resistivity
stability problem is wholly analogous to the re-
ducibility of the finite-viscosity stability problem
of ordinary hydrodynamies.*

22 The similarity of the finite-resistivity and finite-viscosity
problems was first pointed out to us by E. Reshotko. For a
discussion of finite-viscosity instabilities, see C. C. Lin, The
Theory of Hydrodynamic Stability (Cambridge University
Press, New York, 1955).

To understand the basic character of the unstable
modes, let us consider the mechanism whereby the
fluid resists detachment from flux lines. Starting
with Ohm’s law

7j = E + vxB, (63)

let us suppose that the fluid is moving but the
flux lines are not, i.e.. E = 0. Then we find j =
(v xB)/n, with a resultant motor force

F, = jxB = [B(v-B) — vB%]/y (64)

that opposes the fluid motion. In the limit n — 0,
this force, of course, prevents any separate fluid
motion from taking place. We note, however, that
the restraining force becomes arbitrarily weak near
the point where B vanishes, and this is the key
to the situation. Since the quantity B in the present
discussion refers only to the magnetic-field com-
ponents in the ky plane, we can generally select k
so that B has a null at any desired value of y.
We may expect that detached fluid motion can
take place within a region of order ea about such
a null point. For each unstable mode, we will find
a driving force F; that dominates the restraining
force F, within the inner region, and that is itself
dominated by F, outside this region.

We can relate the “skin depth” ea to the growth
rate of the instability. Since Fy is comparable in
magnitude to F,, the rate at which work is done
on the fluid is given by

P ~ —v.F, ~v;(B")*(ea)’/, (65)

where we have used B ~ B’ea. The driving force
gives rise to motion both in the 7 and k directions,
since V-v = 0. In general the instability wavelength
will be much larger than ea, and therefore the fluid
kinetic energy in the k direction is dominant.
Equating the rate of change of this energy to the
driving power, we have

wp U,/k*(ea)’ = o}(B')*(ea)’ /.
The skin depth is then given by

wpn_ |
“ {k2(3'>2}

which agrees with Eq. (34) when expressed in the

(66)
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appropriate dimensionless variables. To arrive at
the instability growth rates, we must next determine
ea by comparison of Fy with F.. For this purpose
we turn to consideration of specific modes.

In the “rippling” mode of Fig. 2(a), the circulatory
motion of the fluid creates a ridge of lower-resis-
tivity fluid into which the local current is channeled.
In other words, when a resistivity gradient exists,
Ohm’s law in its linearized form has an extra term

i = —mjo + vxB, (67)
where 7, is given by the convective law
m = —v-Vn/uw, (68)

and where E = 0 has again been used, as is appro-
priate within the small region of decoupled flow.
The 5, term in Eq. (67) gives rise to a motor force

F,. = j xB
[(V . V"?o)/wﬂo]jo xB (69>

that changes sign as B passes from one side of the
null point to the other. Hence, F,, is a stabilizing
force on the side of higher resistivity and a de-
stabilizing force on the side of lower resistivity.
An unstable mode is obtained if the region of
decoupled flow lies on the lower-resistivity side and
has a width ea such that the driving power

v-Fy ~ 7)32,776(3,)2(6“)/47'770“’ (70)

just dominates v+F, inside the region. Comparison
of Eqgs. (65) and (70) yields

Il

ea ~ ) /4mew.

(71

From Igs. (66) and (71) we can then obtain a
growth rate that agrees with Eq. (50) and Table I.
We note incidentally that the fluid flow and the
perturbation current density are strongly peaked
in the decoupled region, while the magnetic-field
perturbation falls off over a region in y that is of
order k~*. In this outer region the fluid and field are
well coupled, and a fluid motion of small magnitude
accompanies the field perturbation.

We turn next to the gravitational interchange
mode, which is quite similar in character to the
“rippling”’ mode. In the presence of a mass-density
gradient, and a y-directed gravitational field, the
fluid motion gives rise to a force

ng = mg = (—pr(’)/w)g (72)

which is destabilizing if g points toward decreasing
density. Comparison of v-F,, with Eq. (65) gives

ca ~ [pbgn/(B') '] (73)
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From Egs. (66) and (73) we then obtain a growth
rate that agrees with Eq. (59) and Table I. The
mode that decouples the fluid and field most effec-
tively in this case is the counter-circulatory mode
shown in Fig. 2(c). In the infinite-conductivity case,
such a fluid motion would lead to local compressions
of B, and so could not proceed unless g is large.
This phenomenon is known as shear stabilization.
In the mode of Fig. 2(c¢), the opposing flux compon-
ents brought together at the null in B can cancel out,
and so the mode can grow for arbitrarily small g.
As g increases, the region of substantial motion
becomes wider, until conditions for infinite-con-
ductivity instability are reached. We note that if g
points in the stabilizing direction, the possibility
exists of using F,, to overcome the driving force
F,., thus stabilizing the “rippling”’ mode.

The “tearing’’ mode of Fig. 2(b) differs from the
other two modes in that it is typically a long-wave
rather than a short-wave mode relative to the
dimension of the current layer. The driving force is
due to the structure of the magnetic field outside
the region of decoupled flow; i.e., the tendency of
the sheet current to break up into a set of parallel
pinches. [The nature of this force is readily per-
ceived by applying the “rubber-band’ argument to
the diagram of Fig. 2(b), but as we are not dealing
with a localized perturbation the argument is not
quite so simple.] Even in the inner region, the flow
is not, perfectly decoupled, and a term

E ~ (wB,/k)d (74)

must be taken into account in Ohm’s law. This term
corresponds to the generation of the perturbation
flux that links the field regions on either side of
B = 0. We have then

"70j1 =E, + vxB (75)

and we must select ea so that the first term on the
right in Eq. (75) dominates the second in the region
of the partly decoupled flow. Using VB = 0,
we have

iv ~ (BY /Arkn. (76)

For wavelengths that are much greater than the
current-layer thickness a, we find

B} ~ B,/ea =~ B,/¢cka (77)

(cf. Eq. 28). If we now choose ea so that nej, ~ E,,
we find
€a ~ no/4drkw. (78)

The growth rate obtained from Egs. (66) and (78)
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approximates the result of Eq. (57) and Table I.
This analysis is applicable only for ka << 1, since
otherwise Eq. (77) breaks down, B)’/B, becoming
negative. Similarly, if B, must vanish at a finite
distance, Eq. (77) is altered, B!’/B, being diminished
or made negative. The significance of these features
in regard to stability is suggested also by Fig. 2(b):
the closed lines of force cannot drive the instability
by the ““rubber-band” effeet unless they are stretched
out along the B = 0 line, i.e., have small ka; and if
conducting walls were introduced at finite values
of y the lateral crowding of the lines of force would
impede the driving mechanism.

It is of interest to note that the basic driving
force for the “tearing” instability also exists in the
infinite-conductivity equation (20). The displace-
ment ¢ = y/F (and thus the instability itself) is
precluded in the ordinary theory by the requirement
that £ be finite where F = 0.

VII. RELATION TO EXPERIMENT

Owing to the approximations made in Sec. II,
the present results cannot be expected to provide
a general basis for the prediction of instability
phenomena in experimental plasmas. In particular,
the use of the hydromagnetic approximation is not
suitable for high-temperature plasmas, while for
low-temperature plasmas the negelect of Ohmic heat-
ing, ionization effects, etc., becomes unjustifiable.

In spite of these shortcomings in rigor, the present
analysis appears to be consistent with a wide range
of experimental results and therefore permits spec-
ulation about the causes and remedies of observed
instabilities. We discuss in this section a number
of observed instability phenomena that are un-
correlated or inversely correlated with predictions
of the infinite-conductivity hydromagnetic theory,
but that can be accounted for at least qualitatively
in terms of the present analysis. Further corrections
and generalizations (some of which are discussed in
the appendices) may provide a quantitative descrip-
tion of the stability behavior of current layers in
experimental plasmas.

The “Tearing” Mode

Since the “tearing” mode is a long-wavelength
instability that involves a considerable disturbance
of the magnetic field of a current layer, it is partic-
ularly suitable for detailed experimental study. We
will consider first the simple sheet pinch, which is
characterized by B,, = 0.

In theta pinches where an initial B, field is
entrapped in plasma and compressed by a fast-rising
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B, field of opposite sign,”**** a cylindrical current
layer results that is fairly well represented by the
plane-sheet-pinch model of the present analysis.
Typical 7 and 74 yalues are 1-10 wsec and 0.01
usec respectively, so that S is of order 100-1000.
The ‘“‘tearing’”’ mode in this case would consist of
a breakup of the cylindrical current layer into
adjacent rings. The fastest growing wavelength
[ef. Eq. (58)] is given by a ~ 0.2, a value that is not
sensitive to the exact magnitude of S. The cor-
responding growth rate [ef. Eq. (57)] is p ~ 20.
Thus the predicted e-folding time is in the range
0.05-0.5 usec.

In those experiments where the plasma volume is
short in the z direction,*® the current layer is found
to collapse into a single ring, presumably because
there is not adequate room and time for a full
wavelength of the ‘“tearing” mode to establish itself.
A more satisfactory test of the theory is expected
for theta pinches that are sufficiently long to
accommodate a number of wavelengths at a« ~ 0.2,
Under these conditions, recent experiments at
Aldermaston® have demonstrated plasma breakup
into as many as six rings, with an instability growth
time of about 0.3 usec. Even long reverse-field theta
pinches are found stable under certain conditions,*®
which may be related to the effect of cylindrical
geometry and external conductors (cf. Appendix G).

The gyro-orbits of particles in theta pinches are
not very small compared with the dimension ¢ of
the current layer itself, let alone the dimension
of discontinuity ea of the “tearing’” mode. We note,
however (cf. Sec. I, paragraph 1), that the ‘“tearing”’
mode exists not only in the hydromagnetic limit but
also in the collisionless limit, where the Vlasov
equation is used directly.'® It seems likely, therefore,
that allowance for nonhydromagnetic effects is not
crucial in the case of the “tearing’”’ mode.

A second experimental embodiment of the simple
sheet pinch is the Triax or tubular dynamic pinch.*’
In this case a reverse-B, layer is created. In the
high-density and highly dynamic forms of this pinch
(3 megamperes, 300 uD,) that are usually employed,
the ‘“‘tearing” mode has not been seen, though an

# A. C. Kolb, C. B. Dobbie, and H. R, Griem, Phys. Rev.
Letters 3, 5 (1959).

# H. A. B. Bodin, T. 8. Green, G. B. F. Niblett, N. J.
Peacock, J. M. P. Quinn, and J. A. Reynolds, Nuclear Fusion
Suppl., Pt. 2, 521 (1962).

% V. Josephson, M. H. Dazey, and R. Wuerker, Phys. Rev.
Letters 5, 416 (1960).

26 H, A. B. Bodin (private communication, 1962).

77 Q. A. Anderson, W, A. Baker, J. Ise, Jr., W. B. Kunkel,
R. V., Pyle, and J. M. Stone, in Proceedings of the Second
International Conference on Peaceful Uses of Atomic Energy
(United Nations, Geneva, 1958), Vol. 32, p. 150.
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effort has been made to induce it.”® This study is
currently being extended. In a slower and weaker
pinch (450 kiloamperes), the expected tearing along
(axial) current-flow lines has been observed® at
pressures of 30-300u in deuterium and argon, with
wavelengths and growth times that agree well with
the present analysis.

The addition of a B,, field to the simple reverse-B,,
sheet pinch evidently has no effect at all on the
“tearing” mode if k, = 0 (the “symmetric”’ case,
where F'/ = 0 at F = 0). Thus the “tearing” mode
may occur in the Triax configuration even in the
presence of an axial magnetic field. Evidence for
such an instability has been found by magnetic
probe measurements.'

In more general current layers, such as those of
the “stabilized” and “inverse stabilized”’ pinches,'
we can always choose our coordinates so as to
transform the current layer into the basic model
that is obtained for the Triax plus axial field. If we
wish to look at the “symmetric case” with &k, = 0,
we orient the x axis of the plane model along B
at the midpoint of the current layer. If the thickness
a of the current layer is small compared with its
radius R, the outer solution of Sec. IV is readily
adapted to cylindrical geometry (see Appendix I).
In this manner we can show that a “stabilized
pinch” with a sharp current layer is essentially
always unstable against the ‘“tearing” mode. A hard-
core pinch with a large vacuum B, field and no null
in the B, field would have an advantage here, since
in this limit % is forced to become large by the
periodicity requirement along the axial coordinate,
the limiting « for which the “tearing”’ mode can
exist being reached when B,/B, ~ R/a.

A second advantage that is realizable in the hard-
core pinch relates to the use of magnetic fields
produced largely by external conductors. In extend-
ing the present results to nonplanar current layers,
the quantities F’, F”’ require special interpretation.
From the derivation of Eqs. (13) and (14), it is
clear that F’, F" relate to the zero-order current in
the plasma. In the planar case, a zero-order vacuum-
field component has constant B., B., and thus
cannot contribute to F’, F’’. In the nonplanar case,
where a zero-order vacuum-field component may
have nonzero derivatives of B,,, B.,, the contribution
of the vacuum-field component to F’, F” must be
specifically excluded. If the zero-order plasma
current is small relative to currents in rigid con-
ductors (e.g., currents in the central core and

28 O, A. Anderson (private communication, 1960).
29 C, E. Kuivinen, Bull. Am. Phys. Soc. 8, 150 (1963).

471

B.~winding of a hard-core pinch), then the F’, F”'
terms in Eqgs. (13), (14) tend to become small
relative to the F' terms. Accordingly, the “rippling”
and ‘‘tearing” modes, which depend on the F’
and F”’ terms respectively, tend to be inhibited.
The behavior of the gravitational interchange mode
is given in Appendix I.

For the “stabilized pinch,” an m = 1 mode
conforming with the magnetic-field direction eould
be obtained even in the infinite-conductivity limit,
so that for this configuration a detailed experimental
study would be necessary to establish the occurrence
of the resistive ‘“tearing’” mode. For an “inverse
stabilized pinch” with B, ~ B,, an m = 1 mode
conforming with the field has been found experi-
mentally,? contrary to the prediction of the infinite-
conductivity theory, and consistent with the present
analysis. For 74 ~ 20 usec, rg ~ 0.2 usec, the
e-folding time of the ‘“‘tearing” mode [ef. Eqgs. (57),
(58)] is about 2 usec.

A striking feature of magnetic-probe traces taken
on the “stabilized””*’ and “inverse stabilized””* pinch
discharges is that magnetic turbulence is suppressed
during the initial dynamic phase. The present
analysis provides a possible explanation. In Sec. V
we note that a sufficiently strong gravitational effect,
(i.e., an accelerational effect in the present case) will
suppress the ‘“tearing’”’ mode in favor of the gravita-
tional interchange mode. Especially in the presence
of an oscillating gravitational field, only short-wave
gravitational interchange modes tend to grow, with a
resultant minimal disturbance of the magnetic field.

The Interchange Modes

In the limit of high S and small @, the “rippling”’
and gravitational modes grow preferentially at short
wavelengths and with k-B = 0, so that there is a
minimal disturbance of the magnetic field. The main
effects to be looked for experimentally are a fluc-
tuating electric field transverse to B and a loss of
hot plasma out of the current layer. The “rippling”
mode interchanges high-conductivity against low-
conductivity plasma, and the gravitational mode
interchanges high-pressure against low-pressure
plasma or permits decelerating plasma to pass across
magnetic field.

Recent studies on Zeta® have shown that the
dominant nonradiative energy loss takes place by

% T,, C. Burkhardt and R. H. Lovberg, in Proceedings of
the Second International Conference on Peaceful Uses of Atomic
Energy (United Nations, Geneva, 1958), Vol. 32, p. 29.

3 'W. M. Burton, E. P. Butt, H. C. Cole, A. Gibson, D. W.
Mason, R. 8. Pease, K. Whitman, and R. Wilson, TAEA
Conference on Plasma Physics and Controlled Nuclear Fusion
Research, Salzburg, Austria, (1961), paper 60.
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convection of hot plasma across magnetic field to the
tube wall. The plasma convection is accompanied
by fluctuating transverse electric fields with fre-
quencies in the 10-100 ke range. The wavelengths
are of order 20 cm in the direction across magnetic
field, and are much greater in the direction along
magnetic field. The parameters rp and 7y are
typically 3000 psec and 1 usec. For the “rippling”
mode, we thus obtain p ~ 100 (cf. Eq. (50)).
The resultant e-folding time of 30 wsec is perhaps
somewhat too long to fit the data. The g8 value is
of order 0.1, so that the G term and the (y')* term
in Eq. (39) are of the same magnitude. The coopera-
tion of the two driving mechanisms leads to a
slightly enhanced growth rate. The stabilizing effect
of heat conductivity on the “rippling” mode in Zeta
(cf. Appendix F) begins to play an important role at
electron temperatures above 10 eV.

The main difficulty in aceounting for the Zeta
results lies in the extremely short dimension of the
region of discontinuity (ea ~ 1 em) that is called
for by the present analysis. The ion gyroradii in
Zeta tend to be of this size or even larger. A non-
hydromagnetic treatment of the region of dis-
continuity is therefore necessary to provide a
rigorously valid model.

The attribution of the plasma loss in Zeta primarily
to the “rippling” mode would have one especially
engaging feature that deserves mention. Contrary to
expectation from the ordinary theory of the inter-
change mode, the plasma in Zeta is most stable when
the field lines in the central region of null shear
come back on themselves on going once around the
major circumference of the torus.’” At these ‘“magic
number”’ points—the higher harmonics of the
Kruskal limit—the periodicity condition around the
major circumference permits an interchange mode
to align itself perfectly with the null-shear magnetic
field in the central region, which is advantageous
for the growth of gravitational modes. We note,
however, from Eq. (31) that the “rippling”’ mode
is not perfectly aligned with the local magnetic field,
but rather with the magnetic field at a point that is
slightly displaced from the point of interchange.
To generate the basic motor force of the instability,
the perturbed current channel must make a small
angle with respect to the field in the hot plasma.
Thus the “magic number”’ regimes are generally
unfavorable to the growth of the “rippling”’ mode.

A number of authors’®™'” have pointed out that
the “rippling”’ mode is well suited to account for

2 |, P. Butt, Bull. Am. Phys. Soc. 7, 148 (1962).
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the pump-out® phenomenon in discharge tubes of
the stellarator type. Using the present results for the
growth rate {cf. Eq. (50)] and assuming typical
parameters 7, = 100 usec 7 = 0.01 psec, we obtain
p ~ 100. Due to the heat-conductivity effect
(cf. Appendix F) the expected growth times of
~1 psec become longer at electron temperatures
above 10 eV. Again we note that the dimension ea
of the discontinuity has an unrealistically small
value: less than a millimeter. A nonhydromagnetic
treatment is needed to give the true growth rate.

The “rippling” mode is not an inherent threat to
the stellarator plasma-confinement scheme, since the
discharge current can always be replaced, at least
conceptually, by other heating methods. But even
in the absence of current, the stellarator generally
has some tendency toward gravitational inter-
changes, which is supposed to be suppressed by the
shear of the magnetic field. For typical parameters
of present experiments, the @ term in Eq. (39) is
much smaller than the 9’* term but once the heating
current is removed the pressure-driven resistive
mode may become the dominant souree of difficulty.
The same remark applies to the stellaratorlike
“Levitron”" (toroidal hard-core pinch). Hopefully,
the nonhydromagnetic effects will serve to suppress
the interchange mode in the limit of high con-
ductivity. In particular, in reference 34 it is shown
that, for a certain class of perturbations, a stabilizing
charge-separation occurs due to finite Larmor radius.
This leads to stability if wp/w, < (kR.)* where
w, is the cylotron frequency, and wy is the growth
rate without correction for finite-Larmor-radius R;,.
Since wy tends to be small for resistive instabilities,
one might expect a strong stabilizing effect.

While the gravitational and resistivity-gradient
effects are usually such as to collaborate in promoting
instability in pinch and stellarator-type devices, the
possibility exists of designing special regimes where
the two effects are balanced against each other.
For example, a stellarator discharge might be
stabilized against the “rippling”’ mode if the absolute
magnetic field strength were made to increase
everywhere with radius. Such an effect can be
achieved by giving the stabilizing windings an
appropriate pitch. The required magnitude of
stabilizing field is indicated by Eq. (60).

Direct observation of interchange modes has been

# E. P. Goburnov, G. G. Dolgov-Savelev, K. B. Kartashev,
V. 8. Nukhovatov, V. 8. Strelkov, and N. A, Yavlinski,
TIAEA Conference on Plasma Physics and Controlled Nuclear
Fusion Research, Salzburg, Austria, (1961), paper 223.

# M. N. Rosenbluth, N. A. Krall, and N. Rostoker,
Nuclear Fusion Suppl., Pt. 1, 143 (1962).
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possible in a linear “stabilized pinch” experiment.*®
Stereoscopic Kerr-cell photography through a screen
electrode reveals luminous ‘“‘streamers” that have
various orientations during the dynamic and
quasistatic phases of the pinch cycle. During the
dynamic phase, the streamers are aligned with the
magnetic field in the regions of highest ¢ stress
(i.e., nearly pure B, field and nearly pure B,) field.
During the quasistatic phase, helical streamers are
seen, which are more nearly aligned with the mean
magnetic field in the current layer, and which can
be accounted for as a mixture of the “rippling’’ and
“tearing’’ modes.

VIII. COMPUTATIONAL PROGRAM

To supplement the analytical treatment in the
range of intermediate S and to obtain accurate
results in general for specific choices of F and of
the boundary conditions, an IBM 709 code is
available. This code is based on Egs. (2)-(6) in
linearized form and makes use of Fourier analysis
in space but not in time. Accordingly, the develop-
ment of specific initial disturbances can be studied.
The code is applicable to both unstable and over-
stable modes, and will be capable of incorporating
Ohmic heating, ionization, and similar effects.

Preliminary results have been reported,® and a
more exhaustive study is under way.
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APPENDIX A. EFFECT OF FLUID
COMPRESSIBILITY

Allowance for fluid compressibility has two
principal effects on the stability analysis. The
equation of motion of the fluid is altered, and the

% D, J. Albares and C. L. Oxley, Bull. Am. Phys. Soc. 7,
147 (1962).
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first-order quantities %, and (gp), receive noncon-
vective contributions.

We begin by demonstrating that the dynamic
effect of compressibility is generally negligible for
the modes of Sec. V. The equation V-:v, = 0 is no
longer valid now, and we replace W’ by W’ +
targV +v, in Eq. (14) [Equation (13) is unaltered].
The extra term arises from the fact that Vv, = 0
when one eliminates (k-v,) from the equations of
motion.

To find V-v,, we use the equation describing
the pressure perturbation

wP, + v+ VP, + vP) Vv, = [(v — 1)/(4#)2]
(VW XB0)2 4+ 27(V %B,)-(V xB))]. (A1)

The effect of Ohmic heating has been included. Heat
losses due to conduction and radiation have been
neglected.

To determine the first-order pressure contribution
P,, we use the equation of motion in the form

k'{PowV1 + VP, — (4'”')4[(V XB0> x B,

+ (VxB) xB] — (eght =0 (A2)
which reduces to
P, +§%%—1+ i%% - ip—‘;;fv” =0, (A3)
where
B,, = §:-(kxB,)/k = BH,
B = §-(kxB,)/k = (B/ia) x,

BHO = k'Bo/k = BF,
B, = k:B,/k = (iB/a){’
v =kvi/k = —(U/karg)(W’ + targV -v,).

We will show below that in the “region of dis-
continuity’’ of Sec. V, which is the region of critical
interest, the B,; and v, terms are negligible. One
finds also |BLoB .| >> [ByoB|.

Equation (A.3) then yields

P] = —B_LOB_U/-/J:T - "—BO'BI/"’J:'II' (A.4)

as would be expected for a subsonic motion: the
total (fluid plus magnetic) pressure remains approxi-
mately constant.

To evaluate the B, B,, term in Eq. (A.3),
and to prove its predominance, we must find the
perturbation-field amplitude x. In the analysis of
the incompressible case, it was unnecessary to
obtain x explicitly in order to find the dispersion
relation. The solution was obtained in terms of ¢
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and W, and the quantity x could then be derived,
if desired, by means of Egs. (8) and (9). Since we
will show that compressibility has a negligible effect,
we may proceed in precisely the same manner, first
obtaining x for the incompressible case, and then
using the result in Egs. (A.3) and (A.1) to verify
the effect of compressibility. The terms involving
Vv # 0 may be easily checked subsequently
to be small. ‘
From Egs. (8) and (9) we obtain

X)) = xl’7 + p + @8/m)F’] — WH'
- /PWiH'") — & Wi'H]
+ (@’8*/ip)FH' Y, (A.5)

an equation that is similar in structure to Eqs. (13)
and (14). In the “outer region” of Sec. IV, we have

xF = —H'y (A.6)

which may be used with Egs. (19), (A.3), and (A.1)
to demonstrate strictly incompressible flow, as might
be expected. In the region of discontinuity, the terms
of Eq. (A.5) involving 7’ are of order p*S™* relative
to the ¥ term, and may be neglected. Similarly, the
term WH' is of order p'S™"' relative to the y term
and may be neglected except in the case G ~ 1,
in which case the two terms are comparable. Trans-
forming to the variable 6, = (u — uo)/¢, and making
the usual approximations in the region of dis-
continuity (cf. Sec. V), we obtain

&’x/d6; — 16ix = (H'/4F)¢0,. (A7)

Thus x behaves much like W. From Eq. (A.7)
we infer

x = O[(H'/eF")Y] (A.8)

in the region of discontinuity.

We may now return to evaluate the magnitude
of terms in Eq. (A.3). From Eq. (A.8), we see
directly that the B,, term is negligible. From Eqs.
(A.8) and (35), it follows that the v, term is of order
p/*S™% and is therefore negligible. We have now
proved Eq. (A.4). Using Eqs (A.4), (A.8), and the
zero-order relation P, Rz —B*HH’ /4w, we may write

P, = i0O(yPt/acF"). "(A9)

We may now estimate the magnitude of the terms
of Eq. (A.1) in the region of discontinuity. The 4,
term is negligible relative to the V P, term, since

n(V "Bo)2 = O(v,-VPy/p)
where we have used Eq. (11). For the 5, term we find
70(V %xBg)«(V xB,) = O(wP,/pe)
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so that it is of the same magnitude as the P, term for
the “rippling” mode [cf. Eq. (53)], but is negligible
for the low-« ‘“‘tearing’” mode [ef. Egs. (36) and (56)]
and the gravitational interchange mode. Next we
compare the P, and VP, terms. From Eq. (A.9)
we have

wP, = 10(pyP}/eaF’ 1g) (A.10)
and we see directly that

v, VP, = iO(WP{/arg). (A.11)
Using Eq. (35) and remembering that U = 0(y),

we conclude that the P, and VP, terms are of the
same order.

Finally we may evaluate the correction to W' in
Eq. (14) that results from compressibility. As we
have noted in connection with Eq. (A.6), this correc-
tion is insignificant in the outer region. In the region
of discontinuity, we have from Eq. (A.1), and from
the remarks on the relative magnitude of its terms

= O[(Ps/yPo)W]
= Ol(ePs/vPo)W']
K |[W'. (A.12)

Thus, allowance for fluid compressibility does not
directly affect the fluid motion involved in the modes
of Sec. V.

The ‘“tearing’”’ mode is thus completely unaffected.
For the ‘“rippling” and gravitational interchange
modes, which depend on the nature of Egs. (11)
and (12), there will generally be indirect compres-
sional effects, since we see from Eq. (A.12) that the
compressional changes in p and 5 are comparable to
the purely convective changes. Accordingly, we write
the equations

[lary V -y |

wpy + Vi Vpy = —pV vy, (A.13)

wm + V-V = §v = Do
.[VWV_MVX&)+2MmeMVx&q

(4‘"')2P 0
where we have used the plasma properties 5~ T}
and pT ~ P.

We begin with the standard gravitational-inter-
change case, i.e., ¥ = F” = 0, and |G/(F')*| K 1.
From Eq. (A.1) (neglecting the Ohmic-heating
terms) and Eqs. (A.4) and (A.13), we obtain as the
modified version of Eq. (33)

FU/AF + UIAG — L) — 16°)
= Y — (4eF’AL,/H")x

(A.14)

(A.15)
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where ‘
Lg = popé/’)’pépo-

Equations (32), (A.7), and (A.15) can readily be
solved by the method of Sec. V, and yield the
eigenvalue equation

A = 727°Q
1 - 5

{2 — $A0 — L)) r(%)].
[I‘{é —a -0y BTyl G190
We note that A is not much altered for L, < 1;
in the case L, > 1, however, we now find unstable
modes for both positive and negative G. (As will
emerge in Appendix I, the dependence on compress-
ibility is a peculiarity of the “true” gravitational
mode, which disappears when ¢ is to be interpreted
as arising from a pressure gradient and curved field.)
For the “rippling” mode we proceed in a similar
manner, now setting G = 0 and including Ohmic-
heating effects. We obtain

t~

- L

2
L8+ Uiaa - £ - 16 = 9o, — &)
7’ 2 " — HI d
- = U (0. ) D)
where
:80 = 4’7"'1')0,’/-82)
_ 1 7 _
80 = ¢ li.u Mo + 2p (1 Lr)] 3

_ 1B }
ac»«m{F,Jr%(l Ly,

R
5“, - 89 7 (1 Lr)?

— _3(3’ - 1)%P6_
2’Y’13Po

The equations for the “rippling” mode are more
difficult to solve formally, because the homogeneous
part of Eq. (A.17) involves 6, while that of Eqg.
(A.7) involves 6,. The main features of the result
are evident, however. Since ¢ ~ 1/p for the “rippl-
ing” mode, we see that the x and dx/df terms in
Eq. (A.17) are of the same order in S and « as the
¢ term. For o >> 1, we know from Sec. V that the
U term becomes of order « relative to the ¢ term,
because (n + 3 — A) — 1/a in Eq. (43). Thus, for
the case of maximum interest, where S and « are
large, we have simply

A=m+3/Q—-L)}, m=1,23 --.(A18)
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Since generally Py} < 0, we will have L, > 0,
so that the growth-rate is reduced. For L, > 1,
the pressure-gradient effect dominates the resis-
tivity-gradient effect in Eq. (A.14), and we obtain
a new ‘“‘rippling” mode that resembles the old one
in every respect, except that n}/4, is to be replaced
by &y — 1)/v]P}/P,. Note that, in the case of
maximum interest considered here, the Ohmie-
heating effects do not play a role.

The analysis in this appendix has been carried out
for H, H # 0 at F = 0. If either H or H' has a
null at F = 0, then it is easy to see that the com-
pressibility effects become completely negligible as
S — . If H' has a null, the Ohmic-heating effects
become completely negligible as 8 — . (These
remarks, of course, cover the important special case
of unsheared field, where H = 0.)

APPENDIX B. LOW-CONDUCTIVITY LIMIT

For § « 1, unstable modes cannot grow faster
than ordinary resistive diffusion. In order that a
zero-order equilibriumn may exist, we therefore
require that Eq. (15) be satisfied. For convenience
we let 7F’ = 1. We will treat the case G = 0.

To make a general estimate of p, we note from
Eq. (18) that W? must be of order S%* or less.
If we had p > S, Eq. (13) would reduce to

V' = (o + pF)y = 0 (B.1)
from which follows
"G W) + @+ =0 (B.2)

B

so that p < 0. Unstable modes are therefore char-
acterized by p < 0(S), which means that they grow
on the hydromagnetic rather than on the resistive
time scale.

The case S < 1 may be applied to liquid-metal
experiments and to some experiments with dense,
low-temperature plasmas of heavy ions. The former
application has been investigated exhaustively by
Murty,” who includes surface-tension and gravita-
tional forces, and uses the slab model

Fr=1, kl<l; F =0, lu>1,

together with the specification 5 = F’.
We will begin with a more general treatment.
As 8 — 0, p — 0, Egs. (13) and (16) reduce to

V= a'y +oF =0, (B.4)
(&) — o+ &S /PIF'GF + ) =0, (B.5)

where W = pov. There are two characteristic cases:
o’ > |F"/F|, for which the ¢ term in Eq. (B.5) is

(B.3)
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negligible; and o° <« |F”/F|n., which includes
Murty’s model.

For o® > |F"/F|, we will set 5 =
(B.5) then becomes

o+ a[—1 + (S/P)FF'] = 0.  (B.6)

We note that short-wave perturbations are now
localized near the point u,, where (FF’)" = 0 rather
than near F = 0; and we expand

FF'" = fo + fz#g

where p» = u — u,. Equation (B.6) then has the
same form as Eq. (41). The fastest growing mode is
given by

1, and Eq.

v = €exp ["%a('—fz/foﬁ#;]
and the corresponding eigenvalue relation is
p = S B.7)

The condition for instability is fo > 0 > f,. To
illustrate what this condition means, let us consider
the model

F = F, 4 tanh p,
where F, is an arbitrary constant. Then we have
FF’’ = —2(tanh u/cosh’® u)(F, + tanh ).

For F, = 0, we find FF” < 0; therefore there are
no modes of the symmetric ‘‘tearing” type. For
F2 <1, wefind g, = —3F, fo = 3F;, fo = —2.
For F2 > 1, we find u, = Fsinh™'(27}), with the
sign of u, to be taken opposite to that of F, for
instability,
8 |F,] 37" Thus the “rippling” mode exists for
F, # 0, and grows most rapidly for Fg > 1.

We turn now to the second characteristic case,
& &K |F"/F|max. The model of Eq. (B.3) is typical
of this case, and will be adopted here. For simplicity,
we will specify 5 = 1 everywhere. This density
profile is somewhat more suitable for the plasma
application than Murty’s, and is well suited to
describe liquid-metal layers suspended in a density-
matching 0il.** Except at the two points where
F"” £ 0, the solution to Egs. (B.4) and (B.5) have
the form ¢, v ~ ¢***, so that the problem is a
purely algebraic one. To obtain the dispersion
relation, it is convenient to write Eq. (B.3) in the
form

F —8u -1+ s+ 1)
F=F =r —1, w< -1,

# 8. A, Colgate, H. P. Furth, and F. O. Halliday, Revs.
Mod. Phys. 32, 744 (1960).

It

in which case fo = 2 |Fo| 37} f, =
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F=FO+“)
F=F,=F,+ 1,

The resultant equations involve ¥, ¥, v;, and v,
where the subscripts refer to values of ¢ and v at
u = —1 and +1 respectively. Eliminating ¢, ¥,
one obtains the two-dimensional homogeneous vector

lul < 1;
u> 1.

“equation

0:[2p° /S — (1/22)(1 — e7*%) + F,]

—p Fe? =0, (B.8)
0[20°/aS® — (1/2a)(1 — ™**) — F,]

+ 0.F e = 0, (B.9)
so that '
p°/8 =11 — ™)

—fa{l £ 1+ EF - DA - (B.10)
The eigenmodes are described by
vy = (Fo_— Le ™ ®B.11)

== 1+ 7 — DA — e}

The typical “tearing”’ mode is found for F, = 0,
where Eq. (B.11) yields v, = =v,, and may be
identified with the antisymmetric-v eigenmode. The
typical “rippling”’ mode is found for F; >> 1, so that
v, = 16721 F (1 — ¢**)¥ !, and may be identi-
fied with the eigenmode involving the positive square
root, when F, > 0.

For a K 1, the eigenvalues are

/8 =0, a, (B.12)
and the eigenmodes are characterized by
/v, = 1, (Fo — 1/(Fy + 1). (B.13)

The first of these modes, describing a simple dis-
placement of the current layer, is the low-a limit
of the “rippling’”” mode; the second covers the
““tearing’”’ mode.

For a > 1, we have

p’ /8 =1 — la(l £ F,). (B.14)

In the special case F, = 0, Eq. (B.14) gives a
single solution

p/8 =1 — fa (B.15)

so that both the antisymmetric-v ‘““‘tearing”’ mode
and the symmetric-v mode are stable. Equation
(B.14) indicates that instability can be obtained
only for F3 > 1, and that the growth rate increases
with F;. For F; — o, we have
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p’/S* = FiaF,, (B.16)
v/, = 26°°, 172, (B.17)

For positive F,, the second of these eigenmodes is
unstable and corresponds to the “rippling”” mode.

The results we have obtained for the o® <«
|[F"/F| .. case are substantially similar to those
of Murty.® We note that, for the “tearing’’ mode,
P has a maximum of order S. For the ‘rippling”
mode, Eq. (B.16) indicates that p is of order o*S,
in contrast with Eq. (B.7), where p is found to be
of order 8. Thus the increase in growth rate at
short wavelengths predicted by Eq. (B.16) is seen
to be dependent on the discontinuities of F’ assumed
in the zero-order configuration. The long-wave
“tearing” mode is not dependent on the exact
structure of F, and similar growth rates would be
expected for continuous-F’ models.

APPENDIX C. THE LIMIT a?? > 1

We consider here the case where the instability
wavelength is smaller than the region of discon-
tinuity. This limit is more of mathematical than
of physical interest, since ordinary resistive diffusion
proceeds more rapidly at such small wavelengths
than does the instability. For o®¢ > 1, it is con-
venient to write Eq. (32) in the form

= :2‘[ a6, g et U<01 + 51)
200 J_ o

N =R U0+ 5) (©1)
valid if 2/ea® << 1. Thus we see that ¢ is no longer
constant in the region of discontinuity, but varies
as strongly as U.

The ¢ term in Eq. (33) becomes negligible, and
the eigenvalues A lie very close to 3, %, 5 - - .

For the “rippling” mode we now have from Eq.

(39), when o°¢ > 1,
p = (S |[F"|/27 )" (C.2)
For the gravitational interchange mode, we may

drop the restriction Eq. (45) on the magnitude of @,
and obtain from Eq. (39), when o’¢’ >> A,

p = SG¥/5. (C.3)

Using Egs. (C.2) and (C.3), we may verify the

validity of the initial assumption that @/ex” < 1
if o > 1.

APPENDIX D. LOW-« LIMIT FOR THE
MODE

“TEARING”

Neglecting terms of order o” in Egs (13) and (14),
we will analyze the ‘“‘tearing” mode without invoking
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the constant-¢ approximation which was used in
Sec. V, and which is inapplicable for « — 0. We will
neglect ¢ and 7', and restrict ourselves to the
symmetric ‘“‘tearing” mode, where F”’ = 0 at F = 0.

In the region of discontinuity, we will set 7 =
p = F’ = 1 for convenience, so that F = u. Egs. (13)
and (14) then yield

¢ =+ @S /D0 + A (D)

where
2=y =py+ WFu (D.2)
Introducing a new independent variable
6, = u(e’S*/p)?
and defining
A= pi/aS

we obtain

%2/d0} = (A + 6) dz/d8, + 40,2, (D.3)

to be solved subject to the boundary conditions

2 = 1’}01
2 =0,

2 =0, 0, = .

If

0,

We observe that there are two well-behaved
solutions at 8, = o, namely z ~ 6;* and 2z ~
exp (—16}), so that Eq. (D.2) can always be solved.
The relationship between the solution z and the
quantity A’ of Eq. (21) is given by

‘p/
v 2 im ()
b \Y — uY
where the denominator represents the intersection

of the asymptote of ¥ with the ¢ axis at 4 = 0.
Using Eq. (D.2), we have

A = 2pf:zdu/(1 —pfowuzdp.>- (D.5)

If we let A" = 2/a (ef. Eq. 28) and define p, =
S, a, = Sta, we obtain from Eq. (D.5) the
eigenvalue relation

p:“H(p,/al) =1

(D.4)

(D.6)

where

HQ) =\ j;wzd01/<1 — f: Blzd01> (D.7)

with the integrals to be determined by means of the
solution of Eq. (D.3). We note that near A = 0,
H ~ )} so that p, & of*?, or p & (S/a)*®, the
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result obtained in Sec. V. It is also easy to verify by
substitution that for A = 1, we have z = exp (—367)
and H(\) = . Thus p, is zero both for A = 0 and
A = 1, and has a maximum value of order unity
somewhere in between. This result verifies the
conjecture made in Sec. V that the maximum of p
with respect to a is of order S'. Eq. (D.4) has been
integrated numerically on the UCSD-CDC 1604.
The solution was used to construct Fig. 3, which
describes the detailed behavior of p in the long
wavelength limit.

APPENDIX E. GENERAL ANALYSIS OF
GRAVITATIONAL INSTABILITIES

Basic Equations

In Sec. V we have treated the gravitational
interchange instability for the case where G(F')™* is
sufficiently small so that ¥ is constant in a region R,
of width ¢, ~ (1 + |A’[)™' about the point u,,
where F = 0. The object of this appendix is to
derive conditions on G(F’)~* for which the constant-y
approximation is justified, and to extend the analysis
to the case of stronger gravitational fields.

As in Eqgs. (32) and (33), we will treat a region
about the point u, in which F’, 4, G, and 5 are
constant, while ¥ is approximated by F’u,, where
41 = u — o For simplicity we will treat the pure
gravitational-instability case where F”, 3 = 0,
so that the ‘“‘tearing” and “rippling” modes are
absent.

The analysis is valid in the range ui < 1. Thus it
applies to high-G modes of short wavelength, i.e.,
a > 1, and it also permits us to assess the constancy
of ¢ near u, for low-G modes of arbitrary wavelength.
High-G@ modes of long wavelength are not covered,
but these are of lesser practical interest.

Eqs. (13) and (14) now reduce to the form

v/’ = y(L + p/a’) + (W/)F'p, (E.D)
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W' /jel = W1 — §*G/p* + (F')’uiS/p]

+ ¢S,  (B2)

where we have set 7 = p = 1.
We make the Fourier transform

b= [ ar g,

W = f iy W g™,

and obtain

ko p_> E AW,
W) i Do @3

P dk2

r 2 OV _
+ 2’8 dy = 0. (E4)
Eliminating ¢., we have

.(Mi( k(2)+0l2 th)
p dky \kj + o + p dk,

= 0.

sza) (E.5)

- W:( 2 + 1-
In our usual limit S— o, where p >> 1, o, we may

reduce Eq. (E.5) to standard form

{k? + o dW,
di, \1 + &2 dk,

} — (Al - D)W, =0, (E.6)

where
ko = pik,, c=d/pKl,
A = p*/(F')’ 8%, D = G/(F') — Ao.
We will confine ourselves to the case G > 0. Since
¢ K 1, we may split the analysis of Eq. (E.5) into

two overlapping ranges: k! < 1 and k¥ > o.
Forkl < 1,weletk, = o ¥, = o 'k, and obtain

EZZ [(1 F ) ”ZZ ] —(Adk: — D)W, =0. (BT

Low-G Case

At this point we turn specifically to consideration
of the case where G(F')~® 1. As we will see,
the approximation A¢ < 1 is appropriate to this case.
Eq. (E.7) then reduces to the Legendre equation.
The general solution is

W, = C\Pi(iks) + C.Py(—1ky) E.8)
where

h

-1+ @1 -4D?Y <o. (E.9)
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We note that the region &k, < 1 is related to the
“outer’” region of Sec. IV, and that the choice of C,
and C, will reflect the outside boundary conditions,
e.g., for a symmetric layer we would have C, = —C,.
For large k. the asymptotic form of the Legendre
function gives

W, & Lk + Lyk; Y (E.10)

where the constants L, , are determined from the C’s.
For D < %, W, decays at large k, (with the first
term predominating), while for D > %, W, is
oscillatory. Since the oscillatory behavior is not
acceptable, it follows that the Ao < 1 approximation
is consistent only with the case D < 1, [i.e., the case
GF)™® < 1)

Continuing with the analysis of the D < 1 case,
we proceed to solve Eq. (E.6) in the range k! > o,
using W, = k! to give the behavior of W, for
o < kI « 1. The appropriate form of Eq. (E.6) is

_cg{ K dw,
dic, \1 + k% dk,

and a solution is

W, = ki@

} — (A} — D)W, =0 (E.11)

(E.12)
with eigenvalue

A=p, (E.13)

clearly the lowest eigenvalue. Hence, for the case
G(F)™® < % we have

— _ nN~27131 \
p = (SaF'{l L 24G(F ) ]}) (B19)

In the low-G limit, Eq. (E.14) reduces to Eq. (59)
for A = %, thus verifying our use of the constant-y
approximation. However, this verification of the
results of Sec. V is limited to the ecase o >> 1, since
only in this limit is the instability localized, so that
we may neglect F'/, set F = F'y, ete.

For a < 1, ¢ increases away from g, [¢f. Eq. (26)],
and the G-term in Eq. (20) may become important.
In particular, if @ is constant, we must require

G/(F..) Lo (E.15)

in order to be able to neglect the contribution of the
G-term at large p.

High-G Case

To study the case G(F')™® > 1, i.e., where the
Suydam eriterion is violated, we return to the range
k¥ < 1 and to Eq. (E.7) with A¢ finite. We note
that the finiteness of As implies p ~ S, as we would
expect for an instability that exists in the infinite-
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conductivity limit. Equation (E.16) has been
integrated numerically, and the results are given in
Fig. 4. The main features of the solution may be
deduced analytically.

For G(F')™® > % the complete solution W, is
obtained within the range &} < 1. (The range k& > ¢
corresponds to the ‘“region of discontinuity” of
Section V, and disappears for infinite-conductivity
modes.) Thus we have the boundary condition that
the solution of Eq. (E.7) should vanish at &+ =, If we
define k, = sinh 2z, then Eq. (E.7) can be reduced
to the form

aw,/dd + [(D — %
—~ lgsech®z — Aosink’® 2]W, = 0. (E.16)
For small As, the resulting “potential well” is
almost a square well, and we derive the eigenvalue
Ao~ (4D — 1) exp [—2r/(D — DY. (E.17)

Thus, for small D — %, As is extremely small.
The growth rate p does not effectively become of
order S until D ~ 3.

For large Ao, Eq. (16) reduces to the harmonic
oscillator equation, and we have the eigenvalue

Ao =1+ (D — 3. (E.18)
For G(F')™* > %, this may be written
pY/S* = G — (F')[G/(F'Y — 4. (E.19)

Note that, since we have assumed |u,| < 1 in
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deriving Eqs. (E.1) and (E.2), the discussion of the
high-G case is valid only for « > 1. Plasma com-
pressibility, which has been neglected throughout,
presumably also affects the high-G case.

APPENDIX F. EFFECT OF THERMAL
CONDUCTIVITY

From Eq. (5a) we obtain to first order
wn + veVn, = + (2x/3n,BY)

[Bo*V(By- V) + Bp-V(B,- V)]  (F.1

so that approximately (setting B2 = B?),
m(p + KF°a®) + (i/a)ni(W — KFo’y) =0, (F.2)
K = 2¢mp/3na® = Sw«/3n{y), (F.3)

~ (10"/m)T*,

where T is in eV.

Note that outside the small skin depth of thick-
ness ¢, around the point where F vanishes, Eq. (19)
tells us that ¥ = —WZF/p, so that the correction
terms cancel in Eq. (F.2). This is reasonable since
in the outside region material is moving with the field
lines, and the condition B-V 7T = 0 is maintained.

If we were to use Eq. (F.2) in the calculations
of Sec. V, only the terms proportional to 4" would
be affected. In the limit K — « we could simply set
7" = 0 in Eq. (39). This would not alter the results
for the gravitational and “tearing’’ modes. For our
previous results on the “rippling’”’ mode to be valid,
we should require

KF?é /p < 1 (F.4)
where we have set F = F'e, its value at the edge
of the region of the discontinuity. Using Egs. (34)
and (50) and putting 7', F’, 5, & 1 we obtain as a
condition of validity

K(@"°/8%) < 1. (F.5)

Since K ~ T*, S ~ T?, the correction term evidently
becomes dominant as 7 — . In cases of practical
interest,®’®! the critical value of 7T is of order 10 eV.
At higher temperatures a mode of the “rippling”
type still exists, but its growth rate depends on K
and is greatly diminished relative to that of the
ordinary “rippling” mode.

We have assumed here that the classical values
of # and « may be used. In experimental situations
where 7 is enhanced by cooperative phenomena, the
magnitude of K may differ from the estimate given
in Eq. (F.3).
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APPENDIX G. STABILIZATION BY CONDUCTING
WALLS

Whether the end-points u,, 4, are located at finite
or infinite u is important only for low-a modes, in
particular for the “tearing” mode. In this appendix
we derive a marginal stability condition for the
“tearing” mode in the presence of conducting walls
located at u,, uo.

From Eq. (49), we have that the marginal stability
condition is characterized by A" = 0. From Eqs. (20)
and (21) we see then that the stability condition is
equivalent to the requirement that o > o, where
o is the eigenvalue of the equation

¢ — Yl + F7/F) =0 (G.1)

with ¢ = 0 at uy, uo. As |u], [u.] become smaller,
we have o) — 0, and the current layer is then
completely stable against the “tearing”” mode.

We begin by considering the simple model F =
tanh g, for which @, = 1 when p,, u, = F o (cf. Eq.
28). Equation (G.1) then becomes

V' — Yled — 2/cosh® p) = 0. (G.2)

The solutions of this equation have been discussed
in reference 18. For u;, = —u,, one finds a, = 0,
0.50, 0.95 when u, = 1.20, 1.36, 2.20. For u, < 1.20,
absolute stability is achieved.

For the general symmetric layer we restrict
ourselves to writing down the value of w, which
completely stabilizes the tearing mode. In this case
a, = 0 and Eq. (G.1) is trivially soluble to give

Bz F/l 1

o PP T Rl ~ O
The generalization to cylindrical geometry is dis-
cussed in Appendix I.

(G.3)

APPENDIX H. EFFECT OF FINITE VISCOSITY

We will consider the case of isotropic fluid vis-
cosity, simply adding a term prV?v to the inertial
term p dv/dt in the equation of motion [Eq. (4)].
This treatment indicates the general character and
magnitude of viscous effects, but gives only a first
approximation to the case of a hot plasma, which is
well known to have an extremely complicated
viscosity tensor. We will defer consideration of the
full viscosity tensor and the Hall-effect terms in
Ohm’s law (which correspond to finite-Larmor-radius
effects) to a later paper, where the present in-
stabilities are approached from the point of view
of the full set of plasma equations.

The most appropriate value of v for the isotropic-
viscosity analysis is probably that corresponding
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to motion transverse to magnetic-field lines. In the
case of the modes of Sec. V, this motion exhibits
extremely steep transverse velocity gradients in the
region of discontinuity near F = 0. For the purpose
of estimating the order of magnitude of » in a
plasma, we note then that

v~ 0t /(1 + with,

where v;, w;, and 7; are respectively the ion thermal
velocity, gyrofrequency, and collision time. We are
usually interested in the case of singly charged ions

and w;r; > 1. For comparison purposes, the
resistivity may be written

n R mc/ne’r,
80 that

v Bi Tem;

-y (H.1)

~~
7 Ar m;m,

where 8; is the ratio of the ion thermal pressure to
the magnetic pressure, and m;, m,. refer to the ion
and electron masses. For a fully ionized plasma,
we have r./7; & (m./m)}(T./T:)}. In what follows,
we will use the expression v = [(5)/4rlq, where
q is generally slightly larger than unity, except for
very-low-g or low-(T./T;) plasmas, when it is small,
or for |B,| very small, in which case ¢ may become
very large.

Using the modified form of Eq. (4), we now obtain
instead of Eq. (14)

20y 2
ﬁW” _ g W = a2W|:p — §__ + F_g_

14
I nis rr
(o) ewsts 1)
np n P

We have retained only the highest derivatives
of W in the inertial and viscous terms. As has been
noted previously, for S — « the left-hand side of
Eq. (14) is important only in the region of dis-
continuity. Since ¢/p — 0 in the high-S limit, this
remark is equally true for Eq. (H.2). The pre-
dominance of the highest derivatives of W follows
from the same consideration.

To calculate the effect of viscosity in the region
of discontinuity, we may proceed as in Sec. V, using
Egs. (13) and (H.2). We note that the viscous term
is of order ¢/ppe relative to the inertial term.
Therefore (unless ¢ << 1) the viscous term will
predominate, and this is the situation that we will
consider here. Since the W’ term is negligible
except in the limit of Appendix C, we note that the
mass density now completely disappears from the
equations, and is replaced by an “effective mass
density”’ p, = q/pe’. Thus we may adapt the analysis

(H.2)
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of Sec. V simply by replacing 5 with p,. The basic
scale unit € of Eq. (34) now becomes
= (¢'#/28 [F')} (H.3)

so that
e, = (1/p)(2aS |F'] q/7)". (H9)

Equations (31) and (32) are unaltered except in the
interpretation of ¢, and Eq. (33) becomes

U — UA — 10 = — (0 — o). (H.5)
We note that the homogeneous equation
U — U -1 =0
is derived from the variational form
A= f a0 (U + %o?U?]/f a9 U*  (H.6)

so that there is a set of positive eigenvalues A, with
a lowest eigenvalue of order unity. Thus the solution
of Egs. (32) and (H.5) proceeds in a manner very
similar to the solution of Eqs. (32) and (33). In the
growth rates of Egs. (50), (57), and (59), we may
simply replace 5 by p, and obtain approximately for
the “rippling”’ mode,

~ )

for the “tearing’ mode,
N

pP= 3 a2q% F‘iw Fj ’ (H'S)
and for the gravitational interchange mode
p A Q( a7 >

4|F'7 ¢

where the fastest growing modes have A = 0(1).
We note that our previous results are left qualita-
tively unaltered. For the ‘rippling” and “tearing
modes, the effective mass density p, becomes large
as S — «, and the thickness e of the region of
discontinuity then inecreases, while the growth rates

are depressed somewhat. For the gravitational inter-
change mode, we have

= (qA/7G)EF")*”, (H.10)

which is independent of 8. Therefore ¢ and p are
altered only by constant factors.

(H.7)

(H.9)

APPENDIX I. EFFECTS OF CYLINDRICAL
GEOMETRY

When applied to nonplanar current layers, the
stability analysis of the plane resistive current layer
must be extended in two major aspects.
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(1) Allowance must be made for the destabilizing
force associated with a negative plasma-pressure
gradient along the radius of curvature; this effect
has been simulated approximately in the planar
analysis by means of a gravitational field, but an
exact interpretation of ¢ remains to be given.

(2) For long-wave modes, i.e., particularly for the
“tearing” mode, which is always long-wave in the
present sense, the cylindrical geometry modifies the
solution in the ‘“‘outer region,” and therefore affects
the value of A’ to be used in the dispersion relation.
We will treat the usual high-S limit.

Interpretation of G
To generalize the planar analysis, we will use a
cylindrieal coordinate system where z — r8, y — r,
and ¢ — 2. Thus the zero-order configuration is
given by
By = 6Byo(r) + £B.o(r)
and the perturbations are given by
hir, ) = filr) exp [i(mb + k.2) + wi].

In analogy with quantities defined in Sec. II and
Appendix A, we will write

¥ = Brl/ B ’
x = (ia/B)[k.By — (m/r)B..],
V = mplkon — (m/mr.],
F = [(m/r)Bey + k.B.o)/kB,
H = [k.By — (m/r)B.o]/kB,
k= (& + m*/RYY,
where R is the radius of F = 0. We will use £, =
k./k, R = R/a.

As in the planar analysis the effect of the de-
stabilizing mechanism appears only in a small
region r =~ R, and for convenience we will specialize
our equations to hold in this region. Since we are not
concerned here with the “rippling” and ‘‘tearing”’
modes, we may neglect the 5, and F” terms in

what follows. Thus we obtain from the pressure-
balance equation [Eq. (9)]

(pp/a’SYW" = Fy"" — 2k, (Ho/R)x,  (1.2)

where Hy, = By,/B. The independent variable is
p = r/a. In deriving Eq. (I.2), we have made the
usual approximation (cf. Sec. V) that for zero-order
quantities ¢ < f,. In the present context, this
includes e << B. We have also neglected terms in ae,
which was found to be appropriate in Sec. V.
Finally, we have used ¢’ « x, which is justified in

(LY

W = —w, kg,
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Appendix A. [From the latter remark and from
Eq. (10), it follows incidentally that k-B, = 0 in
the region of discontinuity, so that B,,, B,;, and
x all have the same r-dependence.] From Ohm’s Law
(Eq. 8), we obtain

v'o= /)y + F/pW (I.3)

as before, and we now need the additional component

x"=z—3x+g~EV
n n

—_ w < r_ ﬂ) _m /:],
; l:lE H; 7 7 H! (I.49)
Equation (I.4) in turn introduces the dimensionless
velocity component V in the k x B direction, so that
we must make use of the appropriate component
of the pressure-balance equation, and obtain

. i I
% V = aFx + w[/aa<Hg + ﬁi) - I%” H] (L.5)
(The x and W terms of Eq. (I.4) are now seen to be
of order p*/a’S*¢(F') ~ p'/aSF ~ G/(F')? < 1
[ef. Eq. (59)] relative to the V term, and are neg-
ligible except in the special limit of Case 2, dis-
cussed below.)

Using Eqgs. (I.2-1.5), we may now carry out an
expansion procedure like that of Sec. V using

0, = (,U - R)/e

It is convenient to introduce 8, = 4nP,/B?, for
which the zero-order pressure-balance equation
gives

86 + H,H; + Hy/R + HH! = 0.

We also use x =

(1.6)
QX, where @ = ¢p/4%, and we

recall U = W4el”/p. The equations may then be
written .
EU o k.H,
462 — 16U = 6,y — SfF X (1.7)
d*y/d6] = Qdy + 6,1), (1.8)
X (% | )
_ k.85 k.86 + 2H3/R)
= b rorm ¥t rm, U @9

It is of incidental interest to note that F’ is related
to the “magnetic shear” by the equation
F' = —E,H,[log (Ho/#Hz)]’~

We next eliminate X from Egs. (I.7) and (I1.9),
obtaining a fourth-order equation, and we solve by
expanding U as in Eq. (40). We obtain
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oJo+ b+ 3+ s+ BB LR [

2R(F')*
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ks

SR(F’)_ze—S—) —-—w+ 3+ 4:69):l f_m dé, 6,u, . (1.10)

Making the constant-y approximation, as in section V, and using the integrals listed below Eq. (46), we

obtain

A = 9ig Z": {m + 3 4 2¢Q + [£2/4<QR(F")’][(m + $)B5 + 298] + 2H§/R)]} (m+ 3%
(m 4+ D(m + 3 + 2¢0) + [F2/SRF)*1(8 + 2H;/R)

m=0

We will be interested mainly in short-wave
instabilities, so that, as in the plane case, we have
A = —2¢, where ¢ > 1. We note immediately
that 8, > 0 is sufficient for stability. (If B,, = 0,
then the point F = 0 oceurs at 8, = 0, so that there
is no instability.) We note also that € cannot be
greater than of order g8}/(F’)?, if the right-hand side
of Eq. (I.11) is to be negative. Thus we may neglect
26Q relative to m + £,

We now obtain the growth rate for g8; < O.
Since e — 0 as S — o, the 8}/¢ term in the numerator
will predominate on the right-hand side of Eq. (I.11),
unless € becomes large. Thus the finiteness of A’
implies & — o, which in turn implies that the sum
of the series in Eq. (I.11) goes to zero.

As has been noted in Sec. V, in the present
analysis of finite-conductivity interchange modes
of the gravitational type, we must restrict ourselves
to a range of parameters such that the infinite-
conductivity modes are stable. Thus the Suydam
criterion, 88k%/B(F")* < 1, must hold. In that case,
the gj-contribution to the (8, + 2H3/R)- terms in
Eq. (I.11) is seen to be negligible relative to the
(m + %) terms. The (2H2/R) contribution is also
negligible when (H,k,/RF’)* < 1. This is the usual
case, which we will refer to as Case 1. The opposite
condition is satisfied for Case 2.

Case 1 is the case of large shear. This appears
more clearly if we write the defining condition as

[log (Ho/uH )" > (Ho/uH.)". (1.12)

In order that the series should be near a null we
require

5280 /eQR(F')* = 5. (1.13)

Evidently there is only a single null, corresponding
to the growth rate

p = (28ok: |63] 7'/5 |F'| BpDt (114

Thus we may identify the quantity G of Eq. (59)
somewhat loosely with —£28,/R. We note, however,
that the pressure-gradient-destabilization term in
Eq. (1.7) is not effectively identical with the
gravitational-force term in Eq. (33)—for example,
it gives rise to only a single unstable mode instead

I'(m + 1) (L.11)

of to a whole spectrum. Also, allowing for finite
compressibility does not affect the present result,
while we have seen in Appendix A that the true
gravitational mode is somewhat modified.

Case 2 is the case of small shear, where the
opposite of Eq. (1.12) holds. If the Suydam criterion
is to be satisfied also, Case 2 can occur only for
8 |84l <« H;/R. From Eq. (I.11), one estimates
then that

p ~ (Sok, 8] #/H.5")}.
The Tearing Mode

Only the solution in the ‘“‘outer region’ is affected
by cylindrical geometry. From Eq. (9), with v = 0,
one obtains a second-order differential equation for ¢,
similar to Eq. (20), but somewhat less tractable.
Given m and «,, one may calculate A’ as in Sec. IIT;
or else one may set A’ = 0, as in Appendix G,
and obtain a stability condition on m and «,. To do
the complete analysis, goes beyond the scope of this
paper, but several points perhaps deserve comment.

1. Except for the m = 0 mode, the quantity «
can no longer be made arbitrarily small, since

o =2 (1 + ) (1.16)

(I1.15)

2
80
2

201 o

From the plane results (Appendix G) we know that
small « is most unstable, and similarly we expect
small m and large B to be most unstable here. We
note also that large B,,/B., prevents low-a modes
for m > 0.

2. A plausible approximation'® is to treat the
layer itself as being approximately plane (¢ < R),
so that Xq. (20) applies, and to use the familiar
Bessel-function solutions in the vacuum regions.
This is a useful method for proving instability in the
case of the more unstable configurations, (for ex-
ample, most ‘‘stabilized pinches’”). From the point
of view of obtaining exact stability criteria, this
approach is unfortunately not wholly satisfactory,
since one finds that stability cannot be achieved
under the conditions where the approximation is
both valid and useful. That is to say, stability
requires either a ~ R, or else Byo/B,o |, ~ R/a,
(for either of which Eq. (20) is inadequate); or else,
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there must be close-fitting conducting walls, so that
the plane approximation holds in the vacuum
region also, if it holds in the current layer itself.
Note added in proof. The marginal stability prob-
lem for the “tearing” mode in cylindrical geometry
is closely related to the problem of ‘neighboring
equilibria” investigated by Rebut.’” The neighbor-
ing-equilibrium analysis, however, necessarily con-
_TP.—I;Rebut, J. Nucl. Energy C4, 159 (1962).

KILLEEN, AND M. N. ROSENBLUTH

fines itself to P, = 0 at u = u,, whereas we have
seen that the ‘“‘tearing’”’ mode exists more generally.

If P, # 0 at u = wo, then x becomes discontinuous

as p — 0; but for large p there is no such difficulty.
Further results on the cylindrical stability problem
with P, = 0 at p, = 0 are given in references
38 and 39.

3 H. P, Furth, Bull. Am. Phys. Soc. 8, 166 (1963).
39 H, P. Furth, Bull. Am. Phys. Soc. 8, 330 (1963).

THE PHYSICS OF FLUIDS

VOLUME 6,

NUMBER 4 APRIL 1963

Green’s Function for the Linearized One-Dimensional Krook Equation with
Electric Forces

HaroLD WEITZNER

Courant Institute of Mathematical Sciences, New York University, New York, New York
(Received 4 October 1962)

An integral representation is obtained for the Green’s function for the linearized one-dimensional
Krook equation with the induced electric field of the medium included. Various asymptotic expansions
in time are then obtained. When the plasma frequency is set to zero, slightly modified hydrodynamic
modes appear. For nonzero plasma frequency, only plasma oscillations unaffected by the collisions are
present. Finally, the initial value problem corresponding to an initial wave packet of approximate
wavenumber % is considered. For times long, but not too long, plasma oscillations are present for
which the frequency and wavenumber satisfy the usual Landau dispersion relation for small wave-
number. After a sufficiently long time, the solution behaves like the Green’s function itself and exhibits

Landau damping.

I. INTRODUCTION

N an earlier paper' we obtained the Green’s func-

tion for the linearized Vlasov equation and then
derived various asymptotic expansions of the electric
field. While we proved that the proposed expression
for the Green’s function was correct, we could not
offer a direct derivation that might be applicable
to other problems. In this paper we wish to consider
another related problem and obtain the Green’s
function in a more natural way. The derivation
presented should be applicable to other integro-
partial-differential equations similar to the linearized
Krook equation studied here. In particular, we shall
study the linearized Krook equation® for a gas of
charged particles, so that the electric field produced
by the gas will also appear, as in the Vlasov equation.
If we set the plasma frequency equal to zero, then we
are considering the ordinary linearized Krook equa-
tion. Thus we shall be able to examine the effects
of collisions on plasma oscillations, and we shall
also be able to consider the transition from a kinetic

! H. Weitzner, Phys. Fluids 5, 933 (1962).

2 P. F. Bhatnager, E. P. Gross, and M. Krook, Phys. Rev.
94, 511 (1954). See also reference 4 below for a later formula-
tion on which this work is based.

model of a gas to a hydrodynamic model as studied
by other authors.’"*

After a formulation of the problem and a deriva-
tion of an integral representation of the perturbed
mass density of the gas we attack the problem of
obtaining asymptotic expansions of the answer.
When the plasma frequency vanishes, we obtain the
various expansions on the basis of reasonable
assumptions on the behavior of the answer. We can
then present a picture of the decaying hydro-
dynamical waves and the extent to which the
hydrodynamical picture is valid. For the case of
nonzero plasma frequency, we again rely on reason-
able assumptions to obtain the expansions. We find
no hydrodynamical waves, and the plasma oscilla~
tions are essentially unaffected by the collision terms.
It is clear from the results that the plasma oscilla-
tions are qualitatively different from the hydro-
dynamical waves. We then consider the initial value

3 H. Grad, “Principles of the Kinetic Theory of Gases,”
in Handbuch der Physik, edited by S. Flugge (Springer-
Verlag, Berlin, Germany, 1959), Vol. XII, p. 205.

4 L. Sirovich and J. Thurber, “Sound Propagation Accord-
ing to Kinetic Models,”” in Rarefied Gas Dynamics, edited by
iI. La(iiurmann (Academic Press Inc., New York, to be pub-
ished).



