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Outline

• A primer on tokamak disruptions
• Disruption prediction with machine learning
• My research: creating a physically interpretable disruptivity boundary 

using linear SVMs
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A primer on tokamak disruptions
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The tokamak is one of the leading candidates 
for a near-term fusion energy
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Schematic of ITER Tokamak and Plant System (adapted from Oak 
Ridge National Laboratory)

Rendering of SPARC (Commonwealth Fusion Systems and 
MIT)



Disruptions are a “grand challenge” for the 
tokamak fusion energy path
• A disruption is a sudden loss of 

plasma confinement
• Disruptions can cause major 

damage in a tokamak via
• High heat fluxes on PFCs
• Currents in tokamak wall (J x B forces)
• Runaway electron beam
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Disruptions in next-generation devices could be 
catastrophic without intervention

Melting caused by a runaway electron beam on 
JET (https://www.iter.org/newsline/-/2234) 

View from visible camera of 
disruption on Alcator C-Mod. 
Courtesy R.A. Tinguely

https://www.iter.org/newsline/-/2234


A disruption generally has three stages

1. Thermal quench (TQ): plasma 
deposits nearly all thermal 
energy into the wall

2. Current quench (CQ): plasma 
current begins to sharply 
decline

3. Runaway electrons (RE): 
beam of high energy 
electrons forms, as much as 
2/3 original plasma current
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Stages of a disruption listed with associated damage, (N. W. Eidietis 
NF 2021)



All three stages pose significant danger to the 
machine
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Stages of a disruption listed with associated damage, (N. W. Eidietis IAEA-PPPL Theory and Simulation of Disruptions 
Workshop 2021)



We can limit the effect of disruptions via scenario 
optimization, avoidance, mitigation, and resilience
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Strategy Definition Analogy to driving a car

Scenario 
optimization Planning/crafting stable plasma configurations Choosing to drive on safe, familiar 

roads

Avoidance Identifying and eliminating the disruption 
precursors

Changing lanes to avoid debris on 
the road

Mitigation Bring the discharge to “soft” landing by launching 
a large amount of mass into the plasma Slamming on the breaks

Resilience Designing the machine to withstand disruption 
effects

Choosing a car built with sturdy 
components



Disruption prediction with 
machine learning
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Disruptions are challenging to predict, 
especially in real time
• Disruptions can be caused by 

complex chains of events that 
can include a range of 
precursors such as:

• MHD events
• Hardware failures
• “UFOs”

• Disruption precursors can 
evolve faster than first-
principles simulations

• Only physics event-based models 
or ML can keep up with plasma
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Disruption event chain at JET (De Vries et al. NF 2011)



Machine learning (ML) allows us to build 
data-driven models from empirical results

Old-school automation (idealized)
1. Identify task
2. Find domain expert who 

completely understands a task
3. Get expert to encode 

knowledge into computer
4. Debug
5. Success! 

Machine learning (idealized)
1. Identify task
2. Find empirical data related to 

task
3. Use domain expert to pre-

process data
4. Tune machine learning model
5. Success! 
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ML can be a powerful tool for studying 
disruptions
• Pre-trained ML models can execute computations almost 

instantaneously  enable use in real-time control settings
• Three main applications of ML for disruptions

• Train on database of simulations to approximate simulation codes in real-
time (surrogate model)

• Event identification for database creation
• Train on experimental data to predict onset of disruption
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Interpretable ML can be a powerful tool for 
disruption avoidance and mitigation 
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Example of interpretable ML disruption predictor, Rea et 
al, NF 2019



Our group is involved in a range of ML-based 
disruption research
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Interpretable disruption 
prediction with Random Forests 
Cristina Rea – Research Scientist

Scenario adaptive disruption 
prediction

Jinxiang Zhu – PhD Candidate

Creating an interpretable physical 
VDE boundary using linear SVM
Andrew D. Maris – PhD Student

Example of interpretable ML 
disruption predictor (Rea et al, 
NF 2019)

PCA clustering plots showing separation between high (purple) and low (cyan) performance 
discharges, (J. X. Zhu, IAEA-PPPL Theory and Simulation of Disruptions Workshop 2021)



Summary

• Disruptions are a grand challenge for the tokamak fusion energy path
• There are three phases of a disruption, each with their own threats

1. Thermal quench
2. Current quench
3. Runaway electron

• Disruption prediction enables avoidance and mitigation, thereby 
reducing the threat of disruptions 

• Machine learning can assist in the study of disruptions
• Interpretable ML opens the door to data-driven avoidance and mitigation
• ML is an exciting frontier of disruption studies!
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Thank you!
A special thanks to my advisors Cristina Rea and Bob Granetz, whose presentation 
was the basis of this talk
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One more thing! Do you want to help shape 
the future of fusion energy in the US?
We are forming a graduate student organization to move the needle on 
fusion energy through public and legislative engagement. That could 
mean writing for public audiences and even visiting your 
congressperson in DC! Our goal is to make this low time commitment 
with big impact.

Join the Discord (I will drop in the chat) and join the email list 
(https://forms.gle/qVjdpRH3PEopc64RA)!
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https://forms.gle/qVjdpRH3PEopc64RA


Creating a physically 
interpretable disruptivity 
boundary using linear SVMs
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We plan to identify “hot” Vertical 
Displacement Events (VDEs)
• Why VDEs?

• VDEs are relatively well understood, enabling 
us to validate the disruptivity boundary with 
known physics

• Succeeding with VDEs will build confidence 
for more exotic disruption types

• We will narrow focus to C-Mod for 
preliminary study

• Potential limitations of this approach
• Functional form of boundary may be 

complicated – large search space
• Does not take time history into account
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ITER Physics Expert Group on Disruptions, Plasma Control, 
and MHD and ITER Physics Basis Editors, NF (1999)

Interior of Alcator C-Mod



Linear support vector machines (lSVMs) create a 
linear boundary between classes of data
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(Machine Learning, Stanford Open Classroom)

Example of an lSVM classifier



lSVMs & recursive feature updating (RFU) have been 
used to create nonlinear symbolic decision boundaries

Machine Learning Discovery of Computational Model Efficacy 
Boundaries. Murillo (2020), PRL

Workflow

Learned 
decision 
boundary

Physical 
decision 
boundary≈
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We investigated whether we can build a 
better VDE disruptivity boundary using lSVMs
• Traditional vertical stability metric: n/ncrit = 1
• Two new approaches for finding VDE boundary

• Use lSVM to build polynomial disruptivity boundary (described in next slide)
• Use lSVM to build power law disruptivity boundary

• Features/signals:
• κ
• li
• lower gap
• n/ncrit
• Iperror, normalized
• zerror

2

• vz
2
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Main findings

• ML approach develops better vertical disruptivity boundary than 
n/n_crit

• Both polynomial and power law tend to converge to a boundary in 
z_error that is modified by n/n_crit

• z_error is most predictive single feature

• Elongation does not seem to be an important parameter manually 
removing it at the beginning of the ML pipeline has no effect on final 
result 
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lSVM workflow

• CV: Hyperparameter and feature selection
• Find optimal hyperparameter C for all features
• Find optimal combination of features using 5-fold group CV 
• If polynomial approach

• Create inverse features (ex. 1/li)
• Create 2nd, 3rd, or 4th order combinations of all features (including division)
• Find optimal combination of these higher-order features using 5-fold group CV 

• Find optimal hyperparameter C  for final set of features
• Caveats: results can be sensitive to initial C, scoring method, and different train/test splits

• Usually use f1 score for power law and f2 score for polynomial

• Test
• A positive detection for a particular shot occurs when two sequential time steps are 

predicted to be disruptive (except for the polynomial approach, where only one time step is 
needed. This is because the polynomial approach naturally is robust to false positives)
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Preliminary results shows this approach works 
far better than n/n_crit VDE boundary

Baseline: n/n_crit
n/n_crit = 1.03
• FPR: 71.3%
• TPR (% of VDE shots “caught”)

Power law
|n_over_ncrit|^0.68 |z_error|^0.59 = 
0.032
• FPR: 47.1%
• TPR “

t until disrupt TPR

20ms 68%

15ms 69%

10ms 70%

0ms 73%

t until disrupt TPR

20ms 80%

15ms 88%

10ms 91%

0ms 100%
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Preliminary results show it works well, but 
more analysis needed

Power law
|n_over_ncrit|^0.68 
|z_error|^0.59 = 0.032
FPR: 47.1%
TPR:

Polynomial
n/n_crit * z_error^2 
= 5.2*10^-5
FPR: 5.2%
TPR:

t until disrupt TPR

20ms 80%

15ms 88%

10ms 91%

0ms 100%

t until disrupt TPR

20ms 48%

15ms 64%

10ms 79%

0ms 96%
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