High-Energy-Density Plasma Diagnostics

Derek Schaeffer Princeton University

PPPL Graduate Summer School August 20, 2021

Outline

- Introduction to HEDP
- Detectors
- Optical Diagnostics
 - Thomson scattering
 - Refractive imaging
- X-ray Diagnostics
 - Pinhole imaging
 - Emission Spectroscopy
- Particle Diagnostics
 - Proton deflectometry
 - Particle spectrometers

Outline

- Introduction to HEDP
- Detectors
- Optical Diagnostics
 - Thomson scattering
 - Refractive imaging
- X-ray Diagnostics
 - Pinhole imaging
 - Emission Spectroscopy
- Particle Diagnostics
 - Proton deflectometry
 - Particle spectrometers

High-Energy-Density (HED) Physics Concerns the Study of Matter at High Densities and Extreme Temperatures

["Frontiers in high energy density physics: The X-games of contemporary science." 2003]

PRINCETON

JNIVERSITY

Laboratory for Laser Energetics (LLE) at University of Rochester Operates Two of the World's Largest Lasers

OMEGA 60

- Competed 1995
- 60 beams, each up to 500 J
- 45 min shot cycle
- Dozens of diagnostics
- Up to 1500 shots/year

OMEGA EP

- Competed 2008
- Four beams, each up to 6.5 kJ
- Two beams can be PW
 - 2.6 kJ in 10 ps
- 1.5 hr shot cycle

More than half of Omega's shots are for external users.

The National Ignition Facility (NIF) at LLNL Aims to Demonstrate Fusion Ignition

٠

٠

•

٠

Magnetic Drive ICF Being Pursued at the Z Pulsed Power **Facility at Sandia National Laboratory (SNL)**

Z Machine

storage

capacitors

forming

lines

lines

stack

Competed 1996

- World's most powerful radiation source
- Z-pinch configuration
- 20 MA peak current, 1 MJ peak energy, 80 TW peak power
- Studies magnetized ICF, laboratory astrophysics, and extreme material states

Z-pinch wire array

Many Diagnostics Fielded on HED Experiments

PRINCETON

UNIVERSITY

DD

Many Diagnostics Fielded on HED Experiments

NIF Target Chamber

HED Experiments Deposit a Large Amount of Energy into a Small System Extremely Quickly

Deposit 10² – 10⁶ J into a mm-scale target in billionths of a second

Key Challenge of HED Science is Measuring HED Systems

- Require very fast measurements (<ns) at high spatial resolution (10 um)
- HED systems generate:
 - optical, UV, and x-ray photons
 - charged particles
 - neutrons
 - strong electromagnetic fields
- Comprehensive diagnostic suite allows much to be learned: plasma parameters (temperature, density, flows), field strength and topology, energy spectra, particle dynamics, etc.
- Primarily rely on both active and passive, non-intrusive, light-based and particle-based diagnostics

Outline

• Introduction to HEDP

• Detectors

- Optical Diagnostics
 - Thomson scattering
 - Refractive imaging
- X-ray Diagnostics
 - Pinhole imaging
 - Emission Spectroscopy
- Particle Diagnostics
 - Proton deflectometry
 - Particle spectrometers

Microchannel Plates (MCPs) Enable the Detection of Very Low Signals

Framing Cameras Provide Series of Time-Gated 2D Images, Like a Movie

PRINCETON

NIVERSITY

- Array of images projected onto HV strip on MCP
- As HV travels along strip, each image recorded
- Total strip time set by HV pulse and strip length (usually of order ~100 ps)
- Different strips can have different start times
- Provides high temporal resolution (~40 ps)

Streak Cameras Provide Temporal Resolution of 1D Data

- Photoelectrons accelerated from photocathode
- Pass through two plates with applied voltage
- Voltage ramped in time, causing electrons arriving later to be deflected differently from those arriving earlier

- Incident 1D data (e.g. spectra) that evolves in time
- Camera streaks data in perpendicular direction, converting time to a spatial axis
- Creates 2D *x*-*t* image
- Temporal resolution ~50 ps

X-rays and Charged Particles can be Measured with Image Plates or Radiochromic Film

- Large dynamic range (>10⁵) and insensitive to strong EM pulses
- Incident ionizing radiation traps electrons in metastable state
- Electrons released when exposed to visible laser (provided by special scanner), emitting detectable line radiation (photostimulated luminescence [PSL])

- Commonly used in medical, industrial, and scientific applications
- Self-developing and insensitive to visible light
- Multiple layers of film and filters allow energy/time discrimination

Energetic Protons can be Measured with CR-39

CR-39

- Transparent plastic sensitive to charged particles
- Insensitive to photons

- Particles leave tracks in CR-39
- Track diameter and depth indicative of particle energy and type

- Tracks made visible through chemical etching
- Digitized with automated microscope scanner
- Particle flux directly counted

Outline

- Introduction to HEDP
- Detectors
- Optical Diagnostics
 - Thomson scattering
 - Refractive imaging
- X-ray Diagnostics
 - Pinhole imaging
 - Emission Spectroscopy
- Particle Diagnostics
 - Proton deflectometry
 - Particle spectrometers

Thomson Scattering Diagnoses Local Plasma Conditions by Observing Spectrum of Light Scattered from Probe Beam

Scattered Power Dependent on Velocity Distribution Functions (VDFs)

Scattered Power

$$P_{s}(\mathbf{k},\omega) \propto \frac{P_{i}}{\hat{s}} \hat{s} \times (\hat{s} \times \hat{E}_{i}) \Big|^{2} n_{e} S(\mathbf{k},\omega)$$

Initial power Scattering angles Electron density Spectral density

[Froula+ "Plasma Scattering of Electromagnetic Radiation" 2nd ed. 2011]

Spectral Density
$S(\mathbf{k},\omega) = S_e(\mathbf{k},\omega) + S_i(\mathbf{k},\omega)$
$S_e(\mathbf{k}, \omega) = \frac{2\pi}{k} \left 1 - \frac{X_e}{\epsilon} \right ^2 \int_{e,0}^{e\text{lectron VDF}} \int_{e,0}^{e\text{lectron VDF}} f_{e,0}(\omega/k)$
$S_{i}(\boldsymbol{k},\omega) = \frac{2\pi Z}{k} \left \frac{X_{e}}{\epsilon} \right ^{2} \int_{\boldsymbol{f}_{i,0}(\omega/k)}^{\text{ion VDF}}$
Landau damping
$\underbrace{X_{s}(\boldsymbol{k},\omega)}_{\text{susceptibility}} = \frac{4\pi e^{2}n_{s}}{m_{s}k^{2}} \int dv \; \frac{\boldsymbol{k}\cdot df_{s}/dv}{\omega - \boldsymbol{k}\cdot v}$
$ \underbrace{\epsilon}_{i} = 1 + X_s + X_i $ dielectric function

Scattering Parameter $\alpha = 1/k \lambda_{De}$ $k \approx 4\pi sin(\theta/2)/\lambda_i$ $\lambda_{De} = (k_B T/4\pi n_e e^2)^{\frac{1}{2}}$

In Non-Collective Regime, Electrons Scatter Incoherently

PRINCETON

PPPI

NIVERSITY

In Collective Regime, Light Scattered from Plasma Waves

PRINCETON

JNIVERSITY

Density modulations in plasma propagate as high frequency electron plasma waves (EPW) and low frequency ion acoustic waves (IAW)

Thomson Scattering Makes Local Measurements of Plasma Parameters

[Follet+ RSI 2016]

Experiments Study VDFs in Laser-Driven Collisionless Shocks on Omega

- Shocks observed in astrophysical systems with scale lengths orders of magnitude smaller than the collisional mean free path
- Known to be the source of very high-energy particle acceleration, including cosmic rays
- Laboratory experiments enable detailed studies using high-energy lasers

- Lasers drive piston plasma into magnetized ambient plasma
- Ambient ions and magnetic flux swept up and accelerated to super-magnetosonic speeds, driving shock
- VDFs parallel to shock normal diagnosed with Thomson scattering

[Schaeffer+ PRL 2019]

Spectra Reflect 1D Ion Velocity Distributions

Strong Flow Deformations Observed with Magnetic Field

Plasma Parameters Extracted by Iteratively Fitting Data with Calculated Spectra

Thomson Scattering Data Demonstrate Piston-Ambient Coupling Process

Line-Integrated Density Maps can be Measured with Interferometry

x (mm)

- Plasma has index of refraction $n = \left(1 \frac{\omega_p^2}{\omega^2}\right)^{1/2}$
 - $\omega_p = \left(\frac{n_e e^2}{m_e \epsilon_0}\right)^{1/2}$
- Mach-Zehnder interferometer: probe beam sent along two paths, one reference and one through plasma
- Resulting interference pattern related to plasma density through refraction angle

 $\theta_{\alpha} = \frac{1}{2n_{cr}} \int_{-\infty}^{\infty} \frac{\partial n_e}{\partial \alpha} dz$

[Swadling+ RSI 2014]

 Interferometry shows reconnection current sheet

[Suttle+ PRL 2016]

Angular Filter Refractometry Measures Contours of Path-Integrated Density Gradients

- Probe beam is refracted by plasma
- Passes through angular filter placed in Fourier plane
- Results in discrete set of bands corresponding to specific plasma refraction angles
- The angles are proportional to the path-integrated plasma density gradient

 $\theta_{\alpha} = \frac{1}{2n_{cr}} \int_{-\infty}^{\infty} \frac{\partial n_e}{\partial \alpha} dz$

[Haberberger+ PoP 2014]

- Observe steep density gradients in shock front
- At late times, observe shock separate from piston

[Schaeffer+ PRL 2017]

Outline

- Introduction to HEDP
- Detectors
- Optical Diagnostics
 - Thomson scattering
 - Refractive imaging
- X-ray Diagnostics
 - Pinhole imaging
 - Emission Spectroscopy
- Particle Diagnostics
 - Proton deflectometry
 - Particle spectrometers

X-ray Pinhole Imaging Commonly Used in HED Experiments

- Magnification $M = d_1/d_2$
- Pinhole diameter *a* sets
 - resolution $R \sim a$
 - light collection $\Omega \approx \frac{\pi a^2}{4d_1^2}$
- Coupled with 2D detector (e.g. film, IP, CCD, framing camera)

- 2D pinhole arrays frequently used
- *Why?* Noise reduction, time series, differential filtering
- Collimators used to block background when using small pinholes

NIF Used to Produce and Observe Reconnection in Highly-Extended Current Sheets

Earth's Magnetosphere

Image: ESA

- Reconnection converts magnetic energy to kinetic and thermal energy by breaking field lines
- Commonly observed in laboratory and astrophysical plasmas
- For large system sizes with low dissipation, current sheet can break up into magnetic islands ("plasmoids")
- Laboratory experiments enable detailed studies using high-energy lasers

- Lasers create large expanding plasma plumes •
- Magnetic fields self-generated through Biermann Battery Effect $\left(\frac{\partial B}{\partial t} \propto \nabla T_e \times \nabla n_e\right)$
- Fields reconnect as plumes collide
- X-ray self-emission measured to infer plasma temperature •

X-Ray Bremsstrahlung from Plasma Observed Through Different Filters

X-Ray Bremsstrahlung

- "Braking Radiation" from deceleration of electrons
- Characteristic energy dependence which can be exploited to measure fundamental plasma parameters like T_e

$$j(v,Te) \propto \frac{Zn_e^2}{\sqrt{T_e}}e^{-hv/T_e}\bar{g}$$

Emissivity (power/unit frequency/unit volume) Gaunt factor (of order unity)

- X-ray signal attenuated based on filter material and thickness
- Temperature can be estimated by comparing signal through two filters

- X-rays pass through filtered pinhole array
- 4 independently timed strips embedded in MCP
- X-rays captured by time-gated framing camera

X-ray Images Show Evolution of the Plasma and Current Sheet

time

streak

(200 ps)

6 um

Al

4-4.2 ns

Electron T_e Measured by Comparing Filtered Signals

- X-ray signal compared through two filters at same time
- Similar temperatures measured from side-on and face-on images

X-Ray Spectroscopy

X-rays incident on crystal reflected if Bragg condition met diffraction order $n\lambda = 2dsin(\theta)$

wavelength atomic spacing

- Typical crystals: quartz, Ge, Si
- Spherically bent crystals allow focusing and improved signal

[Chen+ RSI 2014]

Outline

- Introduction to HEDP
- Detectors
- Optical Diagnostics
 - Thomson scattering
 - Refractive imaging
- X-ray Diagnostics
 - Pinhole imaging
 - Emission Spectroscopy
- Particle Diagnostics
 - Proton deflectometry
 - Particle spectrometers

Proton Deflectometry Used to Infer E and B Fields Present in Plasma

PRINCETON

TY

Proton Observations can be Quantitatively Converted to B Fields

• By comparing to reference grid, can directly calculate deflection

[Petrasso+ PRL 2009]

Target Normal Sheath Acceleration Generates MeV Proton Beams

- Short pulse laser (~ps, ~100 J) incident on thin metallic foil
- Hot electrons escape from rear side of target
- Electrostatic field develops of order MeV/um
- Accelerates protons up to tens of MeV

 Ultra bright, extremely collimated, high peak energy (~60 MeV), high spatial resolution (~10 um), and short duration (~ps)

Monoenergetic Protons Created by Imploding D³He Capsule

[Seguin+ RSI 2003, Li+ PRL 2006, Li+ RSI 2006]

• Two energies/times

Magnetic Cavity and Compressions Observed in Shock **Experiments on Omega**

6

2

Synthetic proton fluence

Path-integrated B_v

 $B_v(x,y=3)$

x [mm]

0

Proton deflected by shockcompressed fields

[Schaeffer+ PRL 2019]

Highly-Extended Current Sheet Observed in Magnetic Reconnection Experiments on NIF

Highly-Extended Current Sheet Observed on NIF

Energy Spectrum of Charged Particles can be Measured with a Magnetic Spectrometer

Key Challenge of HED Science is Measuring HED Systems

- Require very fast measurements (<ns) at high spatial resolution (10 um)
- HED systems generate:
 - optical, UV, and x-ray photons
 - charged particles
 - neutrons
 - strong electromagnetic fields
- Comprehensive diagnostic suite allows much to be learned: plasma parameters (temperature, density, flows), field strength and topology, energy spectra, particle dynamics, etc.
- Large suite of HED diagnostics have been developed, enabling understanding of new physics