
GSS Stellarators - Optimization in theory

Elizabeth Paul

For a review on any of the following topics, please see the corresponding sections in the tutorial
document (https://arxiv.org/pdf/1908.05360.pdf):

• §4.2 Lagrangian mechanics
• §5.2 Gyroaveraged Lagrangian
• §6.1 Canonical cylindrical coordinates
• §9.3 Boozer coordinates

The following sections of the tutorial discuss the topic of today’s lecture, stellarator design and
optimization, in more detail:

• §12.1 Quasisymmetry
• §13 Optimization for stellarator design

1. Overview

Objectives for stellarator design:

(1) Large volume of nested flux surfaces (“integrability”)
• Reduce magnetic islands and stochastic layers (Figure 1)

(2) Confinement of single particle trajectories
• Particles stay close to magnetic surfaces on average

(3) Confinement of particles with collisions (“neoclassical transport”)
• Reduced collisional heat and particle diffusion

(4) Stability to perturbations
• MHD stability (fast time scale, long wavelength)
• Microstability (slower time scale, small wavelength)

(5) Practical construction
• Sufficiently simple coils
• Distance between coils
• Distance between coils and plasma

In this lecture, we will focus on just a few aspects of stellarator design. In particular, we will
discuss quasisymmetry from a theoretical and pratical point of view.

2. Quasisymmetry

2.1. Lagrangian mechanics reminder. We begin with the Lagrangian for the single-particle
dynamics in a general magnetic field,

L(r, ṙ) =
m|ṙ|2

2
+ qA(r) · ṙ,(1)
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Figure 1. Poincarè section of the magnetic field evaluated from the NCSX modular
coils. Here a magnetic field is followed many times around a device until it intersects a
plane at constant toroidal angle. Colors differentiate different magnetic field lines.

where B = ∇ ×A. Here we have considered the limit of stationary fields and neglected any electric
fields. (Electric fields can be accounted for in all of this discussion, but will only complicate the
expressions.) Recall that the particle trajectories, r(t), are obtained from the Euler-Lagrange equations,

d

dt

(
∂L(r, ṙ)

∂ṙ

)
=
∂L(r, ṙ)

∂r
.(2)

We remark that if the Lagrangian has an ignorable coordinate, ∂L/∂ri = 0, then this yields a conserved
momentum, pi ≡ ∂L/∂ṙi,

→ dpi
dt

= 0.(3)

2.2. Confinement in axisymmetry. The existence of such a conserved quantity has an impor-
tant impact on confinement. To explore this, we consider the limit of axisymmetry. Axisymmetry is
most apparent if we employ standard cylindrical coordinates (Figure 2),

r = RR̂ + Zẑ(4)

ṙ = ṘR̂ +Rφ̇φ̂ + Żẑ(5)

to express the Lagrangian as,

L(R,Z, φ, Ṙ, Ż, φ̇) =
m

2

(
Ṙ2 +R2φ̇2 + Ż2

)
+ q

(
ARṘ+AφRφ̇+AZŻ

)
.(6)

If we consider an axisymmetric magnetic field,

∂AR
∂φ

=
∂Aφ
∂φ

=
∂AZ
∂φ

= 0,(7)
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Figure 2. Cylindrical coordinate system.

this implies that ∂L/∂φ = 0, and yields a corresponding conserved momentum,

pφ ≡
∂L

∂φ̇
= mR2φ̇+ qRAφ.(8)

In the limit of large field strength, we can note that the first term is much larger than the second term.
We compute the approximate scaling of their ratio, using an approximate length scale L, approximate
field strength B, and thermal velocity vt,

mR2φ̇

qRAφ
∼ mvtL

qL2B
∼ vt

ΩL
.(9)

Here we have noticed the appearance of the gyrofrequency, Ω ≡ qB/m. For a strongly magnetized
plasma, this ratio ρ∗ ≡ vt/(ΩL) � 1 (typically, ∼ 1/100 in magnetic confinement devices). This
implies that, to a good approximation, pφ ≈ qRAφ is conserved. In axisymmetic magnetic fields, it
turns out thatRAφ is a flux function. Thus this conserved momentum tells us, to a good approximation,
axisymmetry implies particles stay close to flux surfaces.

2.3. Guiding center Lagrangian. We are interested in more general symmetries that enable
departure from axisymmetry. We will specifically look for symmetries of the guiding center motion.
Recall that the position vector of a particle, r, can be decomposed into the guiding center, R, and
gyroradius, ρ,

r = R + ρ,(10)

where ρ accounts for the fast gyration of the field and R accounts for the averaged motion (Figure 3).
In the limit of small gyroradius (large gyrofrequency) in comparison with typical scales of interest,

it can be costly to evaluate the full dynamics from the single-particle Lagrangian. Instead, we can
perform an asymptotic expansion with respect to the small parameter ρ∗ to obtain a Lagrangian for
the guiding center, R,

L(R, Ṙ) =
m

2

(
Ṙ · b̂(R)

)2
+ qA(R) · Ṙ− µB(R),(11)

where µ = mv2⊥/(2B), the magnetic moment, is a conserved quantity along a trajectory, and b̂ = B/B
is the unit vector in the direction of the magnetic field. For the purposes of this discussion, it is not
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Figure 3. The guiding center trajectory (blue) describes the particle’s motion (black)
after averaging over the fast gyration.

necessary to understand how this Lagrangian is obtained, but an interested reader can refer to the
relevant section (§5.2) in the tutorial for details. We seek symmetries of the guiding center Lagrangian
in order to obtain conserved momenta along trajectories.

We will find that this analysis will be most clear by applying Boozer coordinates to parameterize
the guiding center position, R(ψ, ϑB, ϕB). From the chain rule, we obtain the velocity vector as,

Ṙ =
∂R

∂ψ
ψ̇ +

∂R

∂ϑB
ϑ̇B +

∂R

∂ϕB
ϕ̇B.(12)

Recall that the magnetic field can be written in the covariant form as,

B(ψ, ϑB, ϕB) = G(ψ)∇ϕB + I(ψ)∇ϑB +K(ψ, ϑB, ϕB)∇ψ,(13)

and the contravariant form as,

B(ψ, ϑB, ϕB) = ∇ψ ×∇ϑB − ι(ψ)∇ψ ×∇ϕB.(14)

To be consistent with the contravariant form, we can choose the vector potential A as,

A(ψ, ϑB, ϕB) = ψ∇ϑB − ψP (ψ)∇ϕB,(15)

where ψP (ψ) is the poloidal flux, satisfying ψ′P (ψ) = ι(ψ). This corresponds to one choice of the gauge.
Recall that the gradient of any function, ∇f , can be added to A without changing the magnetic field.
The resulting trajectories are independent of the choice of gauge. Expressing the Lagrangian in this
coordinate system, we obtain

(16)

L(ψ, ϑB, ϕB, ψ̇, ϑ̇B, ϕ̇B) =
m

2B(ψ, ϑB, ϕB)2

(
ψ̇K(ψ, ϑB, ϕB) + ϑ̇BI + ϕ̇BG

)2
+ q

(
ψϑ̇B − ψP (ψ)ϕ̇B

)
− µB(ψ, ϑB, ϕB).

We now seek a symmetry of L with respect to a particular coordinate. First, we note that the angular
dependence of the Lagrangian only enters through the radial covariant component, K(ψ, ϑB, ϕB),
and the field strength, B(ψ, ϑB, ϕB). Recall that the radial covariant component satisfies a magnetic
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differential equation,

ι(ψ)
∂K

∂ϑB
+

∂K

∂ϕB
=
G+ ι(ψ)I

B2
µ0p
′(ψ) +G′(ψ) + ι(ψ)I ′(ψ),(17)

which is driven by the angular dependence of B. This implies that if B possesses a particular symmetry,
then K will inherit this symmetry.

In particular, suppose that B depends only on a particular combination of the Boozer angles,
χ ≡ ϑB − N/MϕB (here we assume M 6= 0). To evaluate this symmetry, we use the coordinates
(ψ, θB, χ) in our Lagrangian. This implies the existence of a symmetry direction of B and thus L,

∂B(ψ, ϑB, χ)

∂ϑB
= 0→ ∂L(ψ, ϑB, χ, ψ̇, ϑ̇B, χ̇)

∂ϑB
= 0.(18)

From the Euler-Lagrange equation, we then obtain the following conserved momentum,

pϑB ≡
∂L(ψ, ϑB, χ, ψ̇, ϑ̇B, χ̇)

∂ϑ̇B
=
mṘ · b̂
B

(I +GM/N) + q (ψ −M/NψP (ψ)) .(19)

In analogy with the analysis of the axisymmetric case, we note that the first term is smaller than the
second term by a factor of ρ∗. Thus this symmetry, again, implies that guiding center trajectories stay
close to flux surfaces. This symmetry is known as quasisymmetry. Unlike axisymmetry, it does not
require a continuous symmetry of the magnetic field vector, but only a symmetry of the magnetic field
strength on a surface (in Boozer coordinates).

Types of quasisymmetry:

(1) M = 0 : quasi-poloidal symmetry (Figure 4)
(2) N = 0 : quasi-axisymmetry (Figure 5)
(3) M 6= 0, N 6= 0 : quasi-helical symmetry (Figure 6)
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(a) (b)

Figure 4. The Quasi-Poloidal Stellarator (QPS) (a) field strength and (b) coils with
plasma boundary. [J. F. Lyon et al, IAEA 2005]
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(a) (b)

Figure 5. The National Compact Stellarator eXperiment (NCSX) (a) field strength
and (b) coils with plasma boundary. [D. J. Strickler et al, IAEA 2006]

(a) (b)

Figure 6. The Helically Symmetric eXperiment (HSX) (a) field strength and (b) coils
with plasma boundary. [F. S. B. Anderson et al, Fusion Technology 1995]
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