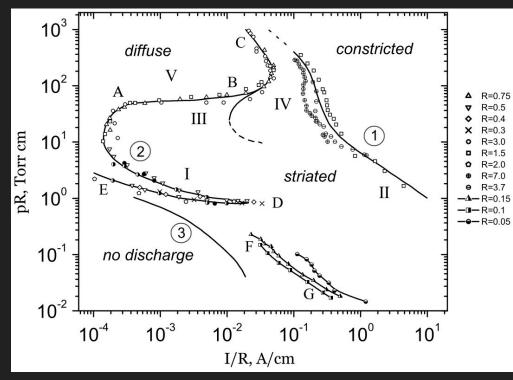
Numerical Modeling of Plasma Striations

2021 Princeton Plasma Physics Laboratory Graduate Summer School

> Juan G Alonso Guzman University of Alabama in Huntsville

What are plasma striations and why do we care?

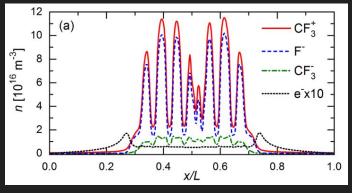
- Formation of spatial patterns along the discharge current
 - light emission, ne, Te, etc
- Multiple proposed mechanisms
 - e.g. non-linear dependence of ionization rate on electron density
- Observed experimentally for a long time but still not fully understood



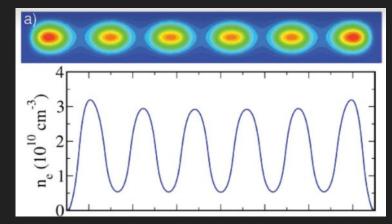
V. I. Kolobov et al, 2020 J. Phys. D: Appl. Phys. 53 25LT01 (5pp)

Courtesy of Dr Ed Thomas, Auburn University

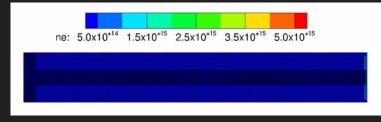
Current state of the field (1)



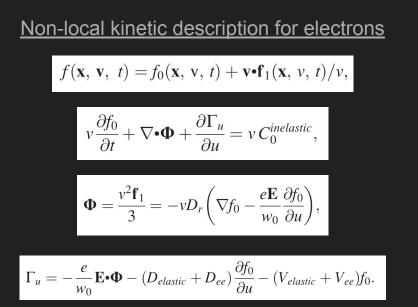
- Structures vary widely with experimental setup
 - discharge current (I)
 - gas pressure (p)
 - tube radius (R)
 - chemical composition
 - circuitry: DC, CCP, ICP, RF
- Scaling laws
 - plasmas with similar
 "combination" of parameters
 exhibit similar behavior


V. I. Kolobov, 2006 J. Phys. D: Appl. Phys. 39 R487-R506

Current state of the field (2)


- Fluid simulations of striations along
 Pupp boundary obtained only recently
- PIC simulations have produced striations for lower current setups

Y.-X. Liu et al., 2016 Phys. Rev. Lett. 116 055024



V. I. Kolobov et al., 2020 J. Phys. D: Appl. Phys. 53 25LT01

R. R. Arslanbekov and V. I. Kolobov, 2021 Plasma Sources Sci. Technol. 30 045013

Our research

Fluid description for ions

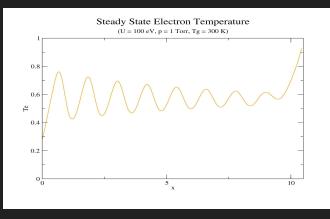
$$\frac{\partial n_+}{\partial t} + \nabla \bullet \Gamma_+ = S_+,$$

$$\Gamma_+ = -D_+ \nabla \bullet n_+ + \mu_+ \mathbf{E} \, n_+,$$

Poisson eq. for electric field

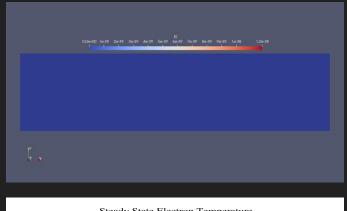
$$abla \cdot (
abla \varphi) = -rac{e}{arepsilon_0} (n_+ - n_e),$$

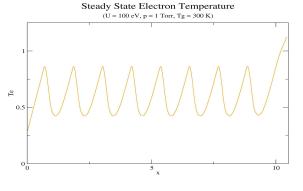
$$\mathbf{E}=-\nabla\varphi.$$


C. Yuan, et al., 1D kinetic simulations of a short glow discharge in helium, PHYSICS OF PLASMAS 24, 073507 (2017)

Solving system while comparing capabilities of different softwares (COMSOL & Basilisk C)

Basilisk C


- Finite Volume method
- Explicit and implicit time treatment developed
- Use of limiters in explicit code in order to maintain $f_0 > 0$
- Boundary conditions are non-trivial to implement due to full tensor diffusion

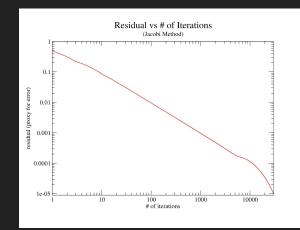


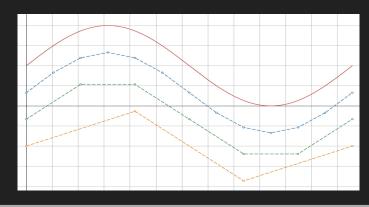
Slope limiters

- Used to prevent unphysical negative values of *f₀* due to tangential fluxes
- Most limiters add numerical damping to the spatial profiles
- Superbee limiter (anti-diffusive) removes damping

Time step coupling method (in Basilisk)

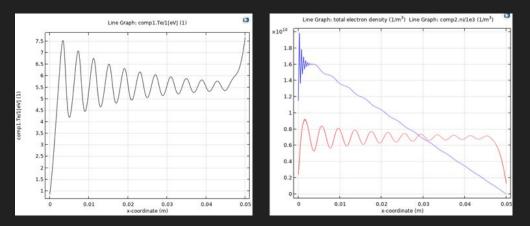
у Т	a[-1,1]	a[0,1]	a[1,1]
	a[-1,0]	a[0,0]	a[1,0]
	a[-1,-1]	a[0,-1]	a[1,-1]

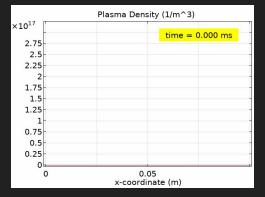

- Start with f_0 , n_i and φ at time t 1.
- 2. Find f_0 at time t + Δ t using n_i and φ at time t (*)
- Find n_i at time t + Δ t using f_0 and φ at time t (**) 3.
- Find φ at time t + Δ t using updated f_0 and n_i (**) 4.
- 5. Repeat from step (1.)


(*) Diffusion-Reaction eq. $\xrightarrow{\Delta t}$ Poisson-Helmholtz eq. (solved with multigrid method)

Tridiagonal system for 1D1E system

Multigrid method


- Method of successive relaxations:
 - Discretized PDE = Linear system
 with one equation per cell/grid point
 - Solve recursively via Jacobi or Gauss-Seidel iterations
- Multigrid "enhancement":
 - "Diminishing returns" in error reduction due to smooth errors persisting
 - Faster convergence by cycling through coarser and finer grids



COMSOL

- Finite Element method
- Multiple options available for time stepping
- Natural log formalism in order to maintain $f_0 > 0$
- Some features are "hidden" and not easily accessible, so it's a bit of a "black box" at times

Useful references

- <u>Two-term spherical harmonic expansion</u>: U. Kortshagen, C. Busch and L. D. Tsendin, On simplifying approaches to the solution of the Boltzmann equation in spatially inhomogeneous plasmas, PLASMA SOURCES SCIENCE AND TECHNOLOGY 5, 1 (1996)
- <u>Multigrid method</u>: W. L. Briggs, V. E. Henson, and S. F. McCormick A multigrid tutorial, 2nd edition (Jan 2000)
- <u>Use of slope limiters in tensor diffusion</u>: P. Sharma, G. W. Hammett, Preserving monotonicity in anisotropic diffusion, JOURNAL OF COMPUTATIONAL PHYSICS 227, 123-142 (2007)

Thank you for your attention

Contact info: jgg0008@uah.edu

Sorry, I'm not currently at my poster... Be right back!