PPPL Graduate Summer School: Introduction to Plasma Diagnostics

Brian Kraus, PPPL bkraus@pppl.gov

August 16, 2021

Questions that models can answer:

What mechanisms produce a given effect?

Why is that the case?

How do effects **scale** with different parameters? (i.e., how can we get more of what we want?)

C. R. Weber et al. (LLNL)

HYDRA radiation-hydrodynamics simulation of NIF implosion

C. S. Chang (PPPL) XGC1 gyrokinetic simulation of tokamak plasma

Questions that models can't answer:

C. S. Chang (PPPL) XGC1 gyrokinetic simulation of tokamak plasma Do these conclusions matter?

or

Is any of this real?

C. R. Weber et al. (LLNL)

HYDRA radiation-hydrodynamics simulation of NIF implosion

Diagnostics: connecting things we think we understand to real life

progress

Inside the UK's MAST tokamak (Gryaznevich et al., Nuclear Fusion 2008) Literally constructed to see inside

Lyman Spitzer's Stellarator A (1953) Hard to see inside

Our goal: tie observables to quantities of interest in the plasma

Plasma does plasma activity Step 1: Measure it

Step 2: Interpret it **Densities:** $n_{e}, n_{i}, n_{z} \dots$ Temperatures: T_e, T_i, T_{rad} Plasma flows: Ve, Vi, İ, Vtoroidal, Vpoloidal ... **Fields E**, **B** particular plasma waves...

Anything else that can be compared to a model

Our goal: tie observables to quantities of interest in the plasma

What are our options?

Passive diagnostics: use whatever comes out of the plasma

No effect on plasma behavior Simpler (but rarely simple)

Options are limited \rightarrow potentially, less information is accessible \bigotimes

You are already equipped to make a passive measurement

2.0 kW thruster PPPL Hall Thruster Experiment

You are already equipped to make a passive measurement

Visible light emission comes from bound-bound atomic transitions

More excited ions \rightarrow more light

So, brighter spots have higher

- Atom / ion density
- · Collisionality with plasma electrons

2.0 kW thruster PPPL Hall Thruster Experiment

Mileage of photography varies depending on plasma conditions

Photo of NSTX-U (UCLA)

Passive + Light

Camera integrates over $\leq 1 \text{ ms}$ with great spatial resolution and spectral resolution within $\lambda \sim 400 - 700 \text{ nm}$ $\sim 1.5 - 3 \text{ eV}$!

$$E_{photon} = h v = \frac{hc}{\lambda} \approx T_e$$

In a tokamak, edge plasma has low T_e with some visible emission...

But the all-important core is invisible!

Varying the detected wavelength yields very different information

Gamma Ray Imager In progress at DIII-D (C. Paz-Soldan 2018)

Synthetic image, showing array of gamma measurements

 $E_{\text{photon}} \sim 1-30 \; MeV$

→ Info on runaway electrons

Fine resolution in λ = spectroscopy

Fine resolution in λ = spectroscopy

Each eler precise

Same idea: the colors in this photo can identify which gas is used in the thruster

Obvi detect impur

2.0 kW thruster PPPL Hall Thruster Experiment

Meyer 2018)

420

Line emission carries a lot more information about plasma behavior

Farnsworth fusor at Eindhoven Inst. Tech.

(Hermens 2019)

Passive + Light

Polarization of light opens other doors

X-rays from H-like Kr are polarized by strong laser fields

Passive + Light

Spectra look very different depending on orientation of laser fields

Theoretical method for measuring laser intensities with x-ray lines (Stambulchik 2014)

For astronomers, the lecture ends here!

Crab Nebula in the optical via the Hubble Space Telescope

The Circinus galaxy in radio and infrared (For et al. 2012)

Here on Earth, we can observe particles ejected from the plasma

Passive + Particles

Many particles are naturally ejected from high-energy-density experiments

Presentation to NIF/JLF User Group Meeting 2016

Passive + Particles

Fusion creates unconfined, relativistic neutrons, here used to study NIF shell

Some low-temperature plasmas generate nanoparticles to image post-discharge

High-voltage carbon arc discharge Directed by Y. Raitses, PPPL

→ creates diversity of carbon nanostructures related to local plasma conditions

(Y. W. Yeh et al. 2016)

Plasma-induced field effects can be detected remotely

An amazing number of magnetic sensors surround most tokamaks

Combined, their signals map plasma current and flux surfaces

CDX-U tokamak, formerly at PPPL

```
(Spaleta et al. 2006)
```


Most obvious: bounce light off of plasma particles

Alcator C-Mod Thomson scattering system (Hughes 2003)

- 1. Send a laser through the plasma
- 2. A few photons collide with free electrons
- 3. A few Thomson scattered photons enter collection optics

of photons ~ electron density

Photon energy spread ~ electron temperature

Laser × Viewing Chord = Spatial Resolution

Active + Light \Rightarrow Light

And if plasma is too dense for laser light? **Use higher-energy photons**

Even light that can't propagate through plasma can tell you something

Waves reflect off the plasma surface where

$$\omega_{photon} = \omega_p(n_e)$$

Magnetic fusion plasmas have $\omega_p \sim GHz$, similar to microwaves

As microwaves approach cutoff, the plasma greatly modifies their phase ϕ :

 $n_e(x)$ related to $d\phi/d\omega_{photon}$

Microwave reflectometry measures density profiles & turbulent fluctuations

Active + Light \rightarrow Light

Laser light can spark atomic transitions in specific locations only

- 1. Pick an atomic state to excite with a tunable laser
- 2. Ions/neutrals absorb laser if it resonates in their frame
- 3. View a second transition emitted from one place

4. Get a local velocity distribution of neutrals or ions!

Laser-induced fluorescence (Severn 2007)

Active + Light \Rightarrow Light

Backlighting with a single wavelength can vastly improve signal-to-noise

Heat backlighter → generate Se line emission

Se passes through ICF experiment

Crystal imager only diffracts Se line

→ Absorption image of implosion!

Se x-rays only Broadband x-rays

Crystal Backlighter Imager at the National Ignition Facility (Hall 2019)

Dope plasma with "tracer" material → get detectable emission lines

Active + Particles \Rightarrow Light

X-ray spectroscopy with Ar¹⁶⁺ at W7-X (Langenberg 2017)

Careful introduction of tracer material allows transport studies

Active + Particles \Rightarrow Light

UV and x-ray spectroscopy of Fe at W7-X (Geiger 2019)

X-rays from tracer material are able to escape high-density plasmas

(Kraus 2021)

Spectrometers only see x-rays from Ti layer

High-resolution x-rays are Doppler shifted

View from two directions \rightarrow get velocity distribution

Active + Particles → Light

28

What if dense material is not hot enough to produce x-rays? Use fluorescence

Image specific locations exactly at time of pump beam!

Build in **high-energy x-ray source** V²¹⁺ emits ~5 keV x-rays

These excite lower-energy x-rays in material of interest Cold Ti **fluoresces** at 4.5 keV

Active + Particles \Rightarrow Light

Shock experiments at SG-III laser (Pu 2019)

Particle injection can also drive specific + traceable line emission

D⁺ doesn't have bound electrons to radiate until charge exchange with beam neutrals!

Dissect D_{α} spectrum $\rightarrow T_i$, v_i of *main ions* localized to beam-sightline intersection!

Active + Particles \Rightarrow Light

How about sending in particles to fuse? Learn from resulting neutrons

Puff T_2 gas into D^+ plasma

Fusion is dramatically enhanced when $T^{\scriptscriptstyle +}$ ions reach a location

Neutrons escape and are "imaged" in directionally specific detectors

→ Validate transport models of fusion particles themselves

(Efthimion 1995)

Send particles through plasma → study all kinds of deflections

Proton radiography: one laser drives proton source, others drive plasma of interest Protons pass through and map out E and B fields

(Gao 2012)

Planning for known particle deflection can be an integral part of the diagnostic

Detector captures heavy ions that were re-ionized in a known location

Energy is conserved:

lonized electron "falls" into plasma potential φ_p, losing potential energy

The heavy ion gains an identical amount of energy

Energy of the detected heavy ion is directly related to φ_p

Active + Particles \Rightarrow Particles

Heavy ion beam probe (Crowley 1994)

What about fields? Probes are a primary way to get through Debye shielding

Let probe **float** at whatever voltage brings zero current $(I_e = I_i) \rightarrow \text{informs } T_e$

Bias probe negatively to collect ions \rightarrow get n_i

Bias probe positively to collect electrons \rightarrow get n_e, maybe melt probe

Sweep probe about the floating potential: only some electrons hit probe, get electron energy distribution function

So, how do you measure a plasma?

1. Decide what you want to know

E.g., fluctuations in n_e

- 2. Brainstorm: what does that parameter influence? Local particle flux, brightness, plasma frequency...
- 3. How can you obtain related information in your given plasma?

 Probe to collect particles: Will it melt? Will it perturb the plasma?
Camera to collect light: What wavelength will the light be? Can that light escape? Is emission dependent on n_e only?

Can either option resolve fluctuations in time? How well?

4. Pick at least one option, and convince yourself you can account for or neglect all confounding factors

Most obvious: bounce light off of plasma particles

1. Send a laser through the plasma

- 2. A few photons collide with free electrons
- 3. A few Thomson scattered photons enter collection optics

of photons ~ electron density

Photon energy spread ~ electron temperature

Alcator C-Mod Thomson scattering system (Hughes 2003) Laser × Viewing Chord = Spatial Resolution

Most obvious: bounce light off of plasma particles

Active + Light \Rightarrow Light

(Hughes 2003)

What might be problematic here? rons nter Is the laser bright enough to scatter measurable light? Do I have to sacrifice time resolution for signal? What if we detect light scattered from walls, not electrons? nperature How good does spectral resolution need to be to get meaningfully precise T_e? esolution

21

Dope plasma with "tracer" material → get detectable emission lines

Active + Particles → Light

X-ray spectroscopy with Ar¹⁶⁺ at W7-X (Langenberg 2017)

Dope plasma with "tracer" material → get detectable emission lines

- Each Ar¹⁶⁺ ion donates 16 electrons that the device must confine with no benefit to fusion. Will this affect anything?
- Are T_i of Ar and D the same? Or their velocities?
- All measurements are chord-integrated. Can I do tomographic reconstructions, assuming everything is constant on a flux surface?

X-ray spectroscopy with Ar¹⁶⁺ at W7-X (Langenberg 2017)

3.95

3.96

3.97 Wavelength / Å

3.94

0.0)

0.65)

4.00

3.98

3.99

Many particles are naturally ejected from high-energy-density experiments

Presentation to NIF/JLF User Group Meeting 2016

Passive + Particles

Many particles are naturally ejected from high-energy-density experiments

What might be problematic here?

High intensit

- Is there a detector that can (a) be in the chamber to collect particles and (b) survive strong EMP?
- Do the particles that escape tell you anything about the behavior of material that remains in the target?
- How well calibrated is the magnet? Are there fringe fields?

rticle energy

H. Chen Procentat

Presentation to NIF/JLF User Group Meeting 2016

So, how do you measure a plasma?

Think critically and acknowledge every assumption you can

Minor differences between plasma systems may demand disproportionately different approaches

Learn about what's specifically been done in the past

- Each example shown here is the result of uncountable person-years of consideration, engineering design, and trial and error
- Collaborate with other groups, or talk to them at conferences like APS-DPP or the High Temperature Plasma Diagnostics conference (which happens every even year)

Remember: any shred of information you can gather is real!