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This week’s turbulence lectures 

1. Turbulence basics (Guttenfelder) 

 

2. Plasma turbulence, tokamak turbulence (Hammett) 

 

3. Drift waves, gyrokinetics, astrophysical turbulence 

(Hammett) 

 

4. Zoology of magnetized plasma turbulence (illustrated 

with experiment & simulation) (Guttenfelder) 

 

5. Modeling turbulence & transport (Guttenfelder) 
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Today’s lecture outline 

• Definition and examples of turbulence 

• Length and time scales (Navier-Stokes Eq., Reynolds #) 

• Energy cascades (Kolmogorov scaling) 

• Transport (Reynold’s stress, mixing length estimates) 

• Energy drive for turbulence (linear & nonlinear instability) 

• 2D turbulence (atmospheric, plasmas) 

 Outline ways plasma impacts turbulence 
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Today’s lecture outline 

• Definition and examples of turbulence 

• Length and time scales (Navier-Stokes Eq., Reynolds #) 

• Energy cascades (Kolmogorov scaling) 

• Transport (Reynold’s stress, mixing length estimates) 

• Energy drive for turbulence (linear & nonlinear instability) 

• 2D turbulence (atmospheric, plasmas) 

 Outline ways plasma impacts turbulence 

 

• As a starting point, this lecture is predominantly based on 

neutral fluids – but plasma turbulence has analogous 

behavior for all of the topics we’ll cover 

• For this lecture I’ve drawn a lot from books by Frisch (1995) and 

Tennekes & Lumley (1972), notes from Greg Hammett’s turbulence class 

lectures, and Wikipedia & Google 
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What is turbulence? 

 

Why do we care? 
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What is turbulence? I know it when I see it (maybe)… 

• Also, turbulence is not a property of the fluid, it’s a feature of the flow 

(Hammett class notes) 
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Why do we care? 

• Transport  pipe flow, heat exchangers, airplanes, sports, 

weather & climate predictions, accretion in astrophysics, 

fusion energy confinement 

 

• It’s cool! “Turbulence is the most important unsolved 

problem in classical physics” (~Feynman) 
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Three themes throughout this introductory talk 

• Turbulence is deterministic yet unpredictable (chaotic), 

appears random 

– We often treat & diagnose statistically, but also rely on first-principles 

direct numerical simulation (DNS) 

 

• Turbulence causes transport larger than collisional transport 

 

• Turbulence spans a wide range of spatial and temporal 

scales 

– Or in the case of hot, low-collisionality plasma, a wide range of scales 

in 6D phase-space (x,v) 
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Examples of turbulence 
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Turbulence found throughout the universe 

Universität Duisburg-Essen https://sdo.gsfc.nasa.gov/gallery 
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Turbulence is ubiquitous throughout 

planetary atmospheres 
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Plasma turbulence degrades energy confinement / 

insulation in magnetic fusion energy devices 

 

Heat 

loss 

Supercomputer 

simulation of 

plasma turbulence 

(this is what I do      ) 

W. Guttenfelder, F. Scotti 



13 

Turbulence is important throughout 

astrophysics 

• Plays a role in star formation (C. 

Federrath, Physics Today, June 2018) 
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Turbulence is crucial to lift, drag & stall 

characteristics of airfoils 

 

Increased turbulence on airfoil helps minimize 

boundary-layer separation and drag from 

adverse pressure gradient 

Turbulence generators 
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 Turbulent mixing of fuel 

and air is critical for 

efficient & economical 

jet engines 

L/D~100-200 in non-premixed jet flames 

L/D much smaller in 

swirling burner 
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Turbulence in oceans crucial to the climate, 

important for transporting heat, salinity and carbon 

 

 

Perpetual Ocean (NASA, MIT) 

 nasa.gov 

 mitgcm.org 
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Fun with turbulence in art 
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Starry Night, Van Gogh (1889) 
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Leonardo da Vinci (1508), turbolenza 
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The Great Wave off Kanagawa, Hokusai (1831) 
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Why such a broad range of 

scale lengths? 

(Enter the Reynolds number) 
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Incompressible Navier-Stokes 

• Momentum conservation law: 

 

 

 

 

 

 

 

• Assuming incompressible, from mass conservation: 

∂𝐯

∂t
+ 𝐯 ⋅ ∇𝐯 = −

1

ρ
∇P + ν∇2𝐯 + 𝐟B 

∂ρ

∂t
+ ∇ ⋅ (ρ𝐯) → ∇ ⋅ 𝐯 = 𝟎 

Unsteady 

flow 

Convective 

acceleration 

Pressure 

force 

Viscosity Body forces 

(g, JB, qE) 
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Consider externally forced flow, no body 

forces or pressure drop 

• Momentum conservation law: 

 

 

 

 

 

 

 

• Assuming incompressible, from mass conservation: 

∂𝐯

∂t
+ 𝐯 ⋅ ∇𝐯 = −

1

ρ
∇P + ν∇2𝐯 + 𝐟B 

∂ρ

∂t
+ ∇ ⋅ (ρ𝐯) → ∇ ⋅ 𝐯 = 𝟎 

Unsteady 

flow 

Convective 

acceleration 

Pressure 

force 

Viscosity Body forces 

(g, JB, qE) 
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Use dimensionless ratios to estimate 

dominant dynamics 

• Reynolds number gives order-of-magnitude estimate of 

inertial force to viscous force 

 

 

 

 

 

 

 

• For similar Reynolds numbers, we expect similar behavior, 

regardless of fluid type, viscosity or magnitude of V & L (as 

long as we are at low Mach #) 

 

𝐯 ⋅ ∇𝐯

ν∇2𝐯
→

V2/L

νV/L2
 

Re =
VL

ν
 

Viscosities (m2/s) 

Air ~1.510-5 

Water ~1.010-6 

For  L~1 m scale sizes 

and V~10 m/s, Re~106-107 
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Transition from laminar to turbulent flow with increasing Re # 

Cylinders or 

spheres 

Re=0.16 

Re=1.54 

Re=13.1 

Re=26 

Re=2,000 

Re=10,000 

“An Album of Fluid Motion”, M. Van Dyke (1982) 
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Increasing Re # in jet flow (what is changing?) 

 Re=2,300 
Re=10,000 

P. Dimotakis, J. Fluid Mech (2000) 
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“An Album of Fluid Motion”, 

M. Van Dyke (1982) 

Re=4,300 

Re=10,000,000 
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For large Reynolds #, we expect a large range 

of scale lengths 

• Viscosity works via shear stress, ν∇2𝐯 ~ nv/l2 

 

• For the energy injection scales (L0, V0), viscosity dissipation 

is tiny compared to nonlinear dynamics, ~1/Re 

 

• Effects of viscosity will become comparable to rate of energy 

injection at increasing smaller scales l << L0 

 l/L0 ~ Re-1/2 (for laminar boundary layer) 

 l/L0 ~ Re-3/4 (turbulent flow) 

 

 What sets the distribution of fluctuations? 
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Kolmogorov scaling 

(energy cascade through the 

inertial range) 
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Aside: Commonly use Fourier transforms in 

space and/or time 

• We freely interchange between real space (x) and wavenumber space 

(k) in the following, e.g. k~1/lk for a characteristic eddy size lk 

MHD turbulence (Koga, 2008) 
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E.g., imagine there are eddies distributed at 

various scale lengths 

• Of course these different wavenumber eddies are not 

spatially separated but co-exist in space 

Increasing 

wavenumber  

(k) eddies 
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Want to predict distribution of energy with 

scale length (or wavenumber) 

v2

2
= ∫ E k dk 

E k ~vk
2/Δk 

vk
2~Δk E k  

Turbulent energy spectrum 
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A.N. Kolmogorov (1941) provides a well known 

derivation of turbulent energy spectrum 

Assumptions 

• Energy injected at large scales ~ L0 (kforcing ~ 1/L0) 

• Viscosity only matters at very small scales ~ ln (kn ~1/ln) 

• For sufficient separation of scales (L >> l >> ln, i.e. Re >>>> 

1), assume non-linear interactions independent of energy 

injection or dissipation (so called “inertial range”) 

• Turbulence assumed to be homogeneous and isotropic in 

the inertial range 

• Assume that interactions occur locally in wavenumber space 

(for interacting triads k1+k2=k3, |k1|~|k2|~|k3|) 
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Energy injection occurs at large scales (low k) 

 

ϵinj =
d

dt
U0
2 ~

U0
3

L0
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Viscous dissipation strong at small scales 

(high k) 

 

ϵdiss = −νkν
2E(k) 
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Energy cascade: energy transferred from large 

eddies down through successively smaller eddies 
• Occurs locally in k-space (e.g. between ~k/2 < ~2*k) 

– Very large eddy will not distort smaller eddy very much (~rigid 

translation/rotation, no shearing); smaller eddies will not distort much larger 

eddies as they don’t act coherently 

• “Space filling” at every scale (i.e., not intermittent) 

Frisch (1978) 
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Constant energy cascades through the 

“inertial range” 

• With sufficient separation 

between forcing and 

viscous scales (Re>>>1), 

assume “universal” 

behavior in the inertial 

range 

 

• Turbulence assumed 

homogenous and isotropic 

 

• Energy cascades through 

wavenumber space via 

nonlinear v ⋅ 𝛻v interactions 

 

• Assume energy cascade to 

be constant (conservative, 

viscous dissipation 

negligible until smallest 

scales reached) 

Πk = const. 
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Consider a Fokker-Plank / advection equation 

for energy transfer through k-space 

 

d

dt
E k, t = ϵinjδ k − kf −

∂

∂k
 Πk − νk2E k = 0 

Πk =
Δk

Δt
E k  

Π𝑘 
= const. 

(Hammett class notes) 
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Consider a Fokker-Plank / advection equation 

for energy transfer through k-space 

 

Πk =
Δk

Δt
E k  

Π𝑘 
= const. 

ϵinj = ϵdiss = ϵ ≈ Πk =
Δk

Δt
E k = const 
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Constant cascade of energy through the inertial 

range gives Kolmogorov spectrum E(k)~e2/3k-5/3 

ϵ ∼
Δk

Δt
E k ∼ k5/2E3/2  

Δt~
ℓk

vk
~

1

kvk
     eddy turn-over time for scale ℓk 

vk
2~Δk E k ~k E k     (k~Dk for “local-k” interactions) 

Δt~
1

k kE k
∼

1

k3/2E1/2
  

𝐄 𝐤 ~𝛜𝟐/𝟑𝐤−𝟓/𝟑 

Energy cascades will also be seen to be important in plasma turbulence 
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Significant experimental evidence supports 

inertial cascade at large Reynolds # 

Kolmogorov scales 

    lK = (n3/e)1/4 

    tK = (n/e)1/2 

    vK = (ne)1/4 

 

Ratio of Kolmogorov / 

integral scales 

    lK/lint     ~ Re-3/4 

    tKu/lint  ~ Re-1/2 

    vK/u    ~ Re-1/4 

S.G. Saddoughi, J. Fluid Mech (1994) 

𝐄𝐞𝐱𝐩 𝐤 = (𝟏. 𝟔 ± 𝟎. 𝟏𝟓)𝝐𝟐/𝟑𝒌−𝟓/𝟑 
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Significant experimental evidence supports 

inertial cascade at large Reynolds # 

Kolmogorov scales 

    lK = (n3/e)1/4 

    tK = (n/e)1/2 

    vK = (ne)1/4 

 

Ratio of Kolmogorov / 

integral scales 

    lK/lint     ~ Re-3/4 

    tKu/lint  ~ Re-1/2 

    vK/u    ~ Re-1/4 

S.G. Saddoughi, J. Fluid Mech (1994) 

𝐄𝐞𝐱𝐩 𝐤 = (𝟏. 𝟔 ± 𝟎. 𝟏𝟓)𝝐𝟐/𝟑𝒌−𝟓/𝟑 

Too expensive to do direction 

numerical simulation (DNS) of N-S 

for realistic applications  look to 

modeling 
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A poem to help remember the inertial cascade 

Big whorls have little whorls 

Which feed on their velocity, 

And little whorls have lesser whorls 

And so on to viscosity 

 

Lewis F. Richardson (1922) 
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Analysis can be done equivalently in real 

space with structure functions 

• 2nd order structure function observed to follow “two-thirds law” 

 

 

 

• One of the only exact analytic results (“four-fifths law”) is 

given in terms of 3rd order “structure function” 

 

 

 
v|| r + ℓ − v|| r

3
= −

4

5
ϵℓ 

v|| r + ℓ − v|| r
2
∼ ℓ2/3 
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Let’s revisit van Gogh’s turbulent mind 

• Distribution of luminance in 

“Starry Night” matches 

Kolmogorov expectations 

– Not true of his other paintings 

Aragón et al., J. Math Imaging Vis. (2008) 

“Turbulent Luminance in Impassioned 

van Gogh Paintings” 
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Additional interesting notes on Kolmogorov 

phenomenology 

• Energy cascade from large (forcing) scales to small (viscous 

dissipation) scales occurs in ~2.7 large-scale eddy turnover 

times regardless of Reynolds # or viscosity! (Frisch,  

 

• Large scale dynamics doesn’t depend sensitively on details 

of dissipation at small scales, offers potential route to reduce 

computational demands 

 Large Eddy Simulations (LES) with Sub-Grid Scale (SGS) 

models 

– Direct numerical simulation of large scales (sensitive to geometry / 

boundary conditions) coupled to model of cascade to dissipation (but 

not resolved) 
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What about the transport? 
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Use Reynolds decomposition to write 

expression for mean flow 

• Decompose velocity into mean and fluctuating components 

    u = U + u′ 
• Take a time-average  Reynolds-averaged Navier-Stokes 

 

 

 

 

 

 

ρ
∂ui 

∂t
+ ρu j

∂u i
∂xj

= ρfi +
∂

∂xj
−p δij + 2μS ij − ρui

′uj
′   

S ij =
1

2

∂u i

∂xj
+

∂u j

∂xi
   mean rate of strain tensor 
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Use Reynolds decomposition to write 

expression for mean flow 

• Decompose velocity into mean and fluctuating components 

    u = U + u′ 
• Take a time-average  Reynolds-averaged Navier-Stokes 

 

 

 

 

 

 

• ui
′uj

′  is the Reynolds stress (a turbulence-advected momentum flux) 

ρ
∂ui 

∂t
+ ρu j

∂u i
∂xj

= ρfi +
∂

∂xj
−p δij + 2μS ij − ρui

′uj
′   

S ij =
1

2

∂u i

∂xj
+

∂u j

∂xi
   mean rate of strain tensor 
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Use Reynolds decomposition to write 

expression for mean flow 

• Decompose velocity into mean and fluctuating components 

    u = U + u′ 
• Take a time-average  Reynolds-averaged Navier-Stokes 

 

 

 

 

 

 

• ui
′uj

′  is the Reynolds stress (a turbulence-advected momentum flux) 

•
∂ui

∂t
= −

∂

∂xj
ui
′uj

′ + 𝑓𝑖  …   like a transport equation with turbulent 

momentum flux (ui
′uj

′) adding to diffusive viscous flux (∼ ν
du 

dx
 ) 

• Larger turbulent flux  reduced mean velocity gradient 

ρ
∂ui 

∂t
+ ρu j

∂u i
∂xj

= ρfi +
∂

∂xj
−p δij + 2μS ij − ρui

′uj
′   

S ij =
1

2

∂u i

∂xj
+

∂u j

∂xi
   mean rate of strain tensor 
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Example: flow over a surface 

• Expanding boundary layer, leads to momentum deficit (drag) 

 

 

 

 

 

 

 

• Where does momentum go 

– Some cascades to small scales and viscosity 

– Transport momentum to near-wall viscous sublayer, loss through 

viscosity in enhanced by increased sheared flow 

– A component of drag also comes from adverse pressure gradient 

(p0=p + 1/2ru2, Bernoulli, incompressible) 
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Turbulence increases drag coefficient 

compared to projected laminar coefficient 

• Transition point changes with surface roughness & geometry 

Horner, “Fluid Dynamic Drag” (1965) 

laminar 

turbulent 

cD =
Fdrag
1
2
ρ𝐴U2

 



53 

Sudden drop in cD with Reynolds # for sphere 

transitioning to detached turbulence 

 

https://www.grc.nasa.gov/www/K-12/airplane/dragsphere.html 
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Drag coefficient and transition to turbulence 

important to World Cup players 

APS News (July 2018) 

Speed of free kicks / corner kicks 

• Ball trajectory becomes erratic 

around transition – has varied for 

different World Cups (different 

balls), can lead to unhappy players 
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Modeling turbulence (eddy 

viscosity, mixing length 

estimates) 
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Would like solutions for Reynolds stresses (fluxes) 

without expense of direct numerical simulation 

• Could write equations for evolution of 2nd order Reynolds stresses, but will 

then depend on 3rd order terms  closure problem 

• Generally, models try to relate Reynolds stresses to lower order moments 

 

• One example: eddy viscosity (nT) (Boussinesq, 1870s) 

 

 

 

 

• where νt ∼ 𝑢′ ℓ , i.e. treat analogous to molecular diffusion (danger: 

turbulence is advective in nature, not diffusive!!!!!) 
 

• Interesting historical summary by Frisch 

– Barré de Saint-Venant (1850), Boussinesq (1870) – interest in water flow in 

canals; before Maxwell work on kinetic theory of gases 

– Taylor (1915), Prandtl (1925) – boundary layer flows (e.g. airfoils) 

ui
′uj

′ = νt
∂u i
∂xj

+
∂u j

∂xi
+⋯  
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Prandtl (1920s) proposed a mixing length model for 

eddy viscosity 

uX
′ = ℓm

∂ux
∂y

 

Interpretation: 

• Deviation from the mean after traversing a mixing-length ℓm 

• Or, roughly a balance between characteristic turbulent gradient 

(∇u′~u′/ℓm) and mean-flow gradient (∇u )  gives order-of-magnitude 

estimate for fluctuation amplitude 
𝑢′

𝑢 
∼ ℓ𝑚∇  

 Corresponding turbulent eddy viscosity: 

νt = uX
′ ℓm = ℓm

2
∂ux
∂y

 

• Still have to pick (or fit to data) a suitable mixing length, e.g. ~ integral 

scale length (average correlation length) 

• Magnetized plasma turbulent transport models have used eddy viscosity 

/ mixing length estimates (now with much added sophistication, Lec. 5) 
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Why is turbulence 

everywhere? 

(Linear vs. non-linear stability) 
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Energy gradients can drive linear instabilities 

 turbulence 
• Free energy drive in fluid gradients (V, r T) or kinetic gradients 

F(x,v) in the case of plasma 

• We will uncover multiple analogous instabilities in magnetic plasmas 

 

 

 

 

 

 

 

 

 

 

• Generally expect large scale separation remains between linearly 

unstable wavelengths and viscous damping scale lengths (often not the 

case in kinetic plasma turbulence) 

Kelvin-Helmholtz instability ~ V 
Rayleigh-Taylor 

instability ~ r Rayleigh-Benard instability ~ T 
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Nonlinear instability important for neutral fluid 

pipe flow 

• Nonlinear instability (subcritical turbulence) may be 

important in some plasma scenarios 

(Hammett notes) 
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2D turbulence 

(atmospheric, soap films, 

magnetized plasma) 
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Quasi-2D turbulence exists in many places 

• 2D approximation for geophysical flows like ocean currents 

(Charney, 1947), tropical cyclones, polar vortex, chemical 

mixing in polar stratosphere ( ozone hole) 

• Strongly magnetized plasma turbulence is 2D in nature 

 

• Loss of vortex stretching, vorticity is conserved  change in 

non-linear conservation properties 

– Inverse energy cascade E(k) ~ k-5/3 

– Forward enstrophy [w2~(v)2] cascade E(k)~k-3 (at larger 

wavenumbers, smaller scales) 

– Non-local wavenumber interactoins can couple over larger range in k-

space (e.g. to zonal flows) 
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Soap film images have been used to measure 

variation in energy spectrum in 2D 

 

Liu et al., PRL (2016) 
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Mean velocity shear flow can suppress 

turbulence & transport in quasi-2D!  

• In contrast to flow shear drive in 3D turbulence 

• Stratospheric ash from Mt. Pinatubo eruption (1991) spread 

rapidly around equator, but confined in latitude by flow 

shear 
   

 

 

 

 

 

 

 

 

 

 

     

Large shear in 

stratospheric 

equatorial jet 

Aerosol concentration 

(Trepte, 1993) 

• Flow shear suppression of turbulence important in magnetized plasmas 
• See lengthy review by P.W. Terry, Rev. Mod. Physics (2000) 
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The Jet Stream (zonal flow) occurs as a 

consequence of 2D dynamics 
• NASA/Goddard Space Flight Center Scientific Visualization Studio 

 

 

 

 

 

 

 

 

 

 

 

• Similar zonal flow development is critical element in magnetized plasma 

turbulence 

– Driven by non-local wavenumber interactions 
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How does plasma change N-S, 

inertial cascades? 
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New dynamics arise in plasma turbulence 
• New forces & interactions through charged particle motion 

–  dne,i & qdve,i  dE, dj, dB  q[E+dE + (v+dv)(B+dB)] 

– Turbulent dynamos jxB 

– New body forces, e.g. neutral beam injection & RF heating 

• Manipulated by externally applied E & B fields 

– Strong guide B-field  quasi-2D dynamics, changes inertial scaling 

– Variation in equilibrium E field  can suppress turbulence through sheared 

VExB flows (in 2D) 

• Introduces additional scale lengths & times 

–  ri,e, (r/L)vT, c/wpe 

• High temperature plasma  low collisionality  kinetic effects, additional 

degrees of freedom 

– New sources of instability drive / energy injection (can occur over broad range 

of spatial scales) 

– Different interpretation of spatial scale separation / Reynolds #  phase-

space (x,v) scale separation / Dorland #  

– Different cascade dynamics & routes to dissipation (that still occurs through 

collisions / thermalization, but can occur at all spatial scales) 

• You will learn more about all of these as the week progresses 
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Summary of turbulence basics 

• Turbulence is deterministic yet unpredictable 

(chaotic), appears random, often treat & diagnose 

statistically 

• Turbulence causes transport larger than collisional 

transport 

• Turbulence spans a wide range of spatial and 

temporal scales 

– In neutral fluids, there is an energy cascade through the 

inertial range (direction depends on 3D vs. 2D) 

• Plasmas introduce many new turbulence dynamics, 

but we are constantly drawing from neutral fluid 

experience 
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EXTRA SLIDES 
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Momentum transport in turbulent jet 

 

Cushman-Roisin (Dartmouth) www.dartmouth.edu/~cushman/courses/engs43/Turbulent-Jet.pdf 
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Momentum transport in turbulent jet 

 

Cushman-Roisin (Dartmouth) www.dartmouth.edu/~cushman/courses/engs43/Turbulent-Jet.pdf 
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NL interactions 

• v x, t → vk t exp ik ⋅ x  

• v ⋅ ∇v → vk1 t ⋅ k2vk2 t exp i k1 + k2 ⋅ x  

  
∂v𝑘3
∂t

= −vk1 ⋅ k2vk2 k3=k1+k2 
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What is turbulence? I know it when I see it (maybe)… 

– (Enc. Britannica) Turbulent flow, type of fluid (gas or liquid) flow in 

which the fluid undergoes irregular fluctuations, or mixing, in contrast 

to laminar flow, in which the fluid moves in smooth paths or layers. 

In turbulent flow the speed of the fluid at a point is continuously 

undergoing changes in both magnitude and direction. 

– Deterministic yet unpredictable (chaotic) 

– We predominantly rely on statistical analysis or big supercomputer 

direction numerical simulation (DNS) to develop understanding 

• Why do we care? 

– Transport  pipe flow, heat exchangers, airplanes, sports, weather & 

climate predictions, accretion in astrophysics, fusion energy 

confinement 

– Also, it’s cool! And it’s one of the hardest physics problems! 

“Turbulence is the most important unsolved problem in classical 

physics” (~Feynman) 
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Who am I 

(my turbulent academic path) 

• Studied electrical engineering at Milwaukee School of Engineering (loved 

analog circuitry, I was a wannabe audiophile) 

 

• Studied turbulent flames at Purdue University (enjoyed analogous math 

between thermo/fluids and E&M)  my first intro to turbulence (I was 

hooked) 

 

• Finally realized plasmas was the place to be (thermo/fluids + E&M!), so I 

went to U. Wisconsin-Madison to study fusion plasma physics 

 

• Low and behold, plasma turbulence is a hugely important topic in fusion 

(and other) plasmas I’m in the right place! 

 

• My expertise – validating super-computer simulations of gyrokinetic drift 

wave turbulence with experiments 


