Turbulence Lecture #5:
Modeling turbulence & transport
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Lecture #5 outline

« Simple lllustration of building a turbulent transport model

 Few examples of modern turbulent transport models



Have learned a lot from validating first-principles
gyrokinetic simulations with experiment (Lecture 4)

« But the simulations are expensive (1 local multi-scale simulation ~ 20M
cpu-hrs)

« Desire a model capable of reproducing flux-gradient relationship that is
far quicker, so we can do integrated predictive modeling (“flight
simulator”)

» All physics based models are local & gradient-driven, i.e. given gradients
from a single flux surface they predict fluxes:
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Is local assumption appropriate?

If p.=p,/L IS small enough (<~1/300), local is good = OK for ITER and
most reactor designs (at least in the core, not the edge)

Challenges: In the edge, additional effects may change how we model
transport / gradient relationship

— Large, intermittent edge fluctuations with strong non-local effects may
demand full-F gyrokinetic simulations (XGC-1, Gkeyll)

— Local transport time scale, i.e. evolution of T(p,t), is increasingly fast relative
to turbulence

— Related -- edge turbulence should perhaps more realistically be thought of as
source driven vs. gradient driven (think external forcing vs. linear instability)

« We're heating the plasma and watching the temperature respond, not
experimentally prescribing a temperature gradient

— Unclear how to incorporate these effects in reduced models



TRANSPORT MODEL
DEVELOPMENT



lllustration of how to develop a simple plasma
turbulence drift wave transport model

 Decompose flux expressions into wavenumber, amplitude
spectra, and cross-phases
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 Amplitude could be estimated using mixing-length
hypothesis:




Would like a representation for cross-phase based

on linear stability characteristics

Greg (Lecture 3) derived for you the ion response for an
electron drift wave (~Vn)
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where I've added the effect of polarization (1 + k% p2)~!

For simplicity and illustration, assume electrons nearly-
Boltzmann with a small “i6” imaginary component (<<1)
representing instability drive (e.g. TEM)
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Resulting dispersion relation depends on a.,, 8, and
klps

o = o(1+k, “p.)!

- k
Y ~ E‘} m*f : _ 8 ‘:5 Eigls .
I+k'p: L 1+k p;

« EXpecting growth rates to peak
around k,p.<1



Linear stability (10) also gives us cross-phase

Information
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* In this case, cross phase very simply related to growth rate



Evaluate transport expression using linear stability
and mixing-length estimate
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« Model transport determined by (1) mixing length amplitude,
and (2) linear stability characteristics
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Written as a diffusivity, we recover a mixing-length
eddy-diffusivity

Do, =-1/Vn=1"-L,/n

D !
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« This is a very common form for “quasi-linear” turbulence diffusion
coefficient (often more generally y/k?)
« Essentially a mixing-length eddy-diffusivity:
— Radial step size (Ax) = ky 1, typically evaluated at a single k,p.~0.1-0.3,
representative of strongest fluctuations in experiment (& eventually sim.)

— Time step (At) = y~! determined by relevant linear stability dynamics (in this
case, id)
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Using dispersion relation, we recover gyroBohm
scaling factor

Y R O = o-keT./BL,

. * kyp, for expected peak y
kap:, kl‘p% l « Assuming isotropic

Y Ps Te
D = —=——
turb k% Ln B

Dturb ~ 0 - XGB

In the local (small p.) limit, all transport quantities have leading
order gyroBohm scaling

But linear stability (8) still matters (e.g. thresholds &
stiffness) 12



Early models (60’s-80’s) used analytic fluid or
gyrokinetic theory to evaluate linear stability

« Fancy non-linear theories also used to refine model for
saturated fluctuation amplitudes

« A turning point in model sophistication was the advent of
gyrofluid equations & increased computational power
— Hammett, Perkins, Dorland, Beer, Waltz, ....

» Take fluid moments of gyrokinetic equation
» Pick suitable kinetic closures

» Tweak closure free parameters to best match linear
gyrokinetic simulations

— Linear GK simulations became routine in mid-90’s, but expensive and
slow relative to gyrofluid
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MODERN TURBULENT
TRANSPORT MODELS



Breakthrough in understanding was
recognition of threshold and stiffness

R R\
Qmodel = QGB - F(S: 4, ) ' ( )

LT LT,crit

« All local models have gyroBohm prefactor (Qgg)

« First modern model approaches fit coefficients in above
equation to large numbers of GF and/or GK simulations
— RI/L; . from linear simulations
— Additional scaling coefficient F(s,q,...) from nonlinear simulations

» A bunch of fit coefficients, but entirely from first principles



IFS-PPPL able to reproduce a large database
of TFTR discharges

* Recovers a number of important scalings, e.g. stabilization
of ITG (larger R/Ly; ) at increasing T,/T, (see Lecture 3)
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Equivalent parameters found for TEM-
dominant conditions (T, >> T))

Model TEM transport
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Modern GF models use moment equations to
solve for linear equations over entire k space

» Closure models

calibrated to ~1800 linear

GK simulations

— Original GLF23 with 8 fluid

equations (1997)

— Updated TGLF now uses

15 fluid equations /
species (2005)

 Example shows

multiscale growth rates

agreeing with
gyrokinetics (GKS)
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Write transport expressions in terms of cross-
phases and amplitudes
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* Linear analysis gives distinct cross-phases for each
transport channel (far more information than isolated ITG or
TEM models above)

Staebler (2007) 19



Rather complicated saturation rule for the
amplitude spectra

* Also keeps a spectrum of saturated mode amplitudes
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Staebler (2007)
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Saturation coefficients chosen to best match
transport fluxes from ~100 nonlinear
gyrokinetic simulations

« Many fit coefficients in the reduced model, but all determined
from first-principles simulations (no calibrating to experiment)
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Able to match first-principles (gyrokinetic)
transport spectrum
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Some success in profile predictions
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Good agreement in predicted energy
confinement over database of discharges
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Zonal flows play a key role in saturating ITG
turbulence

« Driven unstable by linearly growing primary modes ~ exp(exp(yt))
« Large amplitude helps saturate turbulence

Secondary Instability of ITG Mode
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Near linear threshold, strong zonal flows can
suppress primary instability

« Leads to nonlinear upshift of effective threshold
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Capturing ZF effects in gyrofluid models

- Balance between linear drive, nonlinear k,-mixing due to ZF,

& nonlinear drift wave mixing = able to model energy
redistribution in (k,,k,) space

O (ki ky)
8l4

= iaf (keoky) + DK B (K, 0)kf (ke =K, k)
k.

k70

T (kb RR)O et

Staebler (2016)
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Captures nonlinear upshift predicted In
turbulence (GYRO) simulations
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Staebler (2016)
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Also reproduces cross-scale coupling
(discussed Iin Lecture 4)

 Due to ZF-catalyzed NL energy transfer
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More exotic effects may eventually be included in
modeling turbulence saturation & dissipation

Coupling to damped eigenmodes (that exist at all k, scales, with different
cross-phases) can influence spectral saturation and partitioning of
transport, e.g. Q. vs. Q,;vs. I', ... (Terry, Hatch)

Different routes to dissipation have been addressed theoretically:
Critical balance (Goldreich-Sridhar, Schekochihin, M. Barnes): balance
nonlinear L dynamics with linear || dynamics

— 2D perpendicular nonlinearity at different parallel locations creates fine parallel
structure (k; T) = through Landau damping generates fine v structure -
dissipation through collisions

— Can happen at all k, scales
— Simple scaling argument reproduces transport scaling

Nonlinear phase mixing (Hammett, Dorland, Schekochihin, Tatsuno):

— At sufficient amplitude, gyroaveraged nonlinear term (Svg) - V&f ~ |, (klgl) Svg -

V8f generates structure in u~v2 - dissipation through collisions
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While orders faster than GK, reduced GF
models still slow for predictive modeling

Current research - train neural nets on expansive database
of GF model predictions to use in predictive models (Citrin)

Multi-scale Gyrofluid NN evaluation of
gyrokinetics transport model GF model

~10%0 cpu-sec ~100 cpu-sec ~10° cpu-sec

Sufficient speed up enables real-time control or faster-than-
real-time forecasting
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Summary

« Magnetized turbulent transport models fundamentally use
guasi-linear calculation of cross-phases plus mixing-length
like saturation estimates

« Have shown a number of successes in reproducing first-
principles simulations

* As always, discrepancies (and failures) increase moving
towards the edge - a frontier of turbulence and transport

modeling
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