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Lecture #5 outline 

• Simple Illustration of building a turbulent transport model 

 

• Few examples of modern turbulent transport models 



3 

Have learned a lot from validating first-principles 

gyrokinetic simulations with experiment (Lecture 4) 

• But the simulations are expensive (1 local multi-scale simulation ~ 20M 

cpu-hrs) 

• Desire a model capable of reproducing flux-gradient relationship that is 

far quicker, so we can do integrated predictive modeling (“flight 

simulator”) 

• All physics based models are local & gradient-driven, i.e. given gradients 

from a single flux surface they predict fluxes: 

 

 

 

 

 

     that can be used in solving the 1D transport equation predictively 
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Is local assumption appropriate? 

• If r*=ri/L is small enough (<~1/300), local is good  OK for ITER and 

most reactor designs (at least in the core, not the edge) 

 

• Challenges: In the edge, additional effects may change how we model 

transport / gradient relationship 

– Large, intermittent edge fluctuations with strong non-local effects may 

demand full-F gyrokinetic simulations (XGC-1, Gkeyll) 

– Local transport time scale, i.e. evolution of T(r,t), is increasingly fast relative 

to turbulence 

– Related -- edge turbulence should perhaps more realistically be thought of as 

source driven vs. gradient driven (think external forcing vs. linear instability) 

• We’re heating the plasma and watching the temperature respond, not 

experimentally prescribing a temperature gradient 

– Unclear how to incorporate these effects in reduced models 
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TRANSPORT MODEL 

DEVELOPMENT 
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Illustration of how to develop a simple plasma 

turbulence drift wave transport model 

• Decompose flux expressions into wavenumber, amplitude 

spectra, and cross-phases 

 

 

 

 

 

• Amplitude could be estimated using mixing-length 

hypothesis: 
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Would like a representation for cross-phase based 

on linear stability characteristics 

• Greg (Lecture 3) derived for you the ion response for an 

electron drift wave (~n) 

 

 

 

    where I’ve added the effect of polarization 1 + k⊥
2ρs

2 −1 

 

• For simplicity and illustration, assume electrons nearly-

Boltzmann with a small “id” imaginary component (<<1) 

representing instability drive (e.g. TEM) 
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Resulting dispersion relation depends on w*e, d, and 

krs 

• Expecting growth rates to peak 

around kqrs1 
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Linear stability (id) also gives us cross-phase 

information 

• In this case, cross phase very simply related to growth rate 
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Evaluate transport expression using linear stability 

and mixing-length estimate 

• Model transport determined by (1) mixing length amplitude, 

and (2) linear stability characteristics 
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Written as a diffusivity, we recover a mixing-length 

eddy-diffusivity 

• This is a very common form for “quasi-linear” turbulence diffusion 

coefficient (often more generally γ/k⊥
2 ) 

• Essentially a mixing-length eddy-diffusivity: 

– Radial step size Δx = kr
−1, typically evaluated at a single krs~0.1-0.3, 

representative of strongest fluctuations in experiment (& eventually sim.) 

– Time step Δt = 𝛾−1 determined by relevant linear stability dynamics (in this 

case, id) 
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Using dispersion relation, we recover gyroBohm 

scaling factor 

• In the local (small r*) limit, all transport quantities have leading 

order gyroBohm scaling 

• But linear stability (d) still matters (e.g. thresholds & 

stiffness) 

• kqrs for expected peak g 

• Assuming isotropic 

g   

Dturb =
γ

kr
2 = δ

ρs
Ln

Te
B

 

Dturb ≈ δ ⋅ χGB 
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Early models (60’s-80’s) used analytic fluid or 

gyrokinetic theory to evaluate linear stability 

• Fancy non-linear theories also used to refine model for 

saturated fluctuation amplitudes 

 

• A turning point in model sophistication was the advent of 

gyrofluid equations & increased computational power 

– Hammett, Perkins, Dorland, Beer, Waltz, …. 

 

 Take fluid moments of gyrokinetic equation 

 Pick suitable kinetic closures 

 Tweak closure free parameters to best match linear 

gyrokinetic simulations 

– Linear GK simulations became routine in mid-90’s, but expensive and 

slow relative to gyrofluid 
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MODERN TURBULENT 

TRANSPORT MODELS 
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Breakthrough in understanding was 

recognition of threshold and stiffness 

• All local models have gyroBohm prefactor (QGB) 

• First modern model approaches fit coefficients in above 

equation to large numbers of GF and/or GK simulations 

– R/LT,crit from linear simulations 

– Additional scaling coefficient F(s,q,…) from nonlinear simulations 

 A bunch of fit coefficients, but entirely from first principles 

 

Qmodel = QGB ⋅ F s, q, … ⋅
R

LT
−

R

LT,crit

α
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IFS-PPPL able to reproduce a large database 

of TFTR discharges 

• Recovers a number of important scalings, e.g. stabilization 

of ITG (larger R/LTi,crit) at increasing Ti/Te (see Lecture 3) 

ITG 

Kotschenreuther (1995) 

TFTR 

Model ITG transport (not all shown) 

Model ITG threshold (not all shown) 

Bars:  exp. 

Lines: model 
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Equivalent parameters found for TEM-

dominant conditions (Te >> Ti) 

 
TEM (Te>>Ti) 

Peeters (2005) 

Model TEM transport 

Model TEM threshold 

ASDEX Upgrade 

Flux-gradient relationship 
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Modern GF models use moment equations to 

solve for linear equations over entire k space 

• Closure models 

calibrated to ~1800 linear 

GK simulations 

– Original GLF23 with 8 fluid 

equations (1997) 

– Updated TGLF now uses 

15 fluid equations / 

species (2005) 

• Example shows 

multiscale growth rates 

agreeing with 

gyrokinetics (GKS) 

Staebler (2007) 



19 

Write transport expressions in terms of cross-

phases and amplitudes 

• Linear analysis gives distinct cross-phases for each 

transport channel (far more information than isolated ITG or 

TEM models above) 

Staebler (2007) 
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Rather complicated saturation rule for the 

amplitude spectra 

• Also keeps a spectrum of saturated mode amplitudes 

Staebler (2007) 
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Saturation coefficients chosen to best match 

transport fluxes from ~100 nonlinear 

gyrokinetic simulations 

• Many fit coefficients in the reduced model, but all determined 

from first-principles simulations (no calibrating to experiment) 

Staebler (2007) 



22 

Able to match first-principles (gyrokinetic) 

transport spectrum 

 

Staebler (2007) 
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Some success in profile predictions 

 

core 
boundary 

Temperature 

Measurement              

prediction 

Kinsey (2010) 
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Good agreement in predicted energy 

confinement over database of discharges 

 

Kinsey (2011) 
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Zonal flows play a key role in saturating ITG 

turbulence 
• Driven unstable by linearly growing primary modes ~ exp(exp(gt)) 

• Large amplitude helps saturate turbulence 

Dorland (2000) 
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Near linear threshold, strong zonal flows can 

suppress primary instability 

• Leads to nonlinear upshift of effective threshold 

Dorland (2000) 
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Capturing ZF effects in gyrofluid models 

• Balance between linear drive, nonlinear kx-mixing due to ZF, 

& nonlinear drift wave mixing  able to model energy 

redistribution in (kx,ky) space 

Staebler (2016) 
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Captures nonlinear upshift predicted in 

turbulence (GYRO) simulations 

 

Staebler (2016) 
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Also reproduces cross-scale coupling 

(discussed in Lecture 4) 

• Due to ZF-catalyzed NL energy transfer 

Staebler (2016) 
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More exotic effects may eventually be included in 

modeling turbulence saturation & dissipation 

• Coupling to damped eigenmodes (that exist at all k scales, with different 

cross-phases) can influence spectral saturation and partitioning of 

transport, e.g. Qe vs. Qi vs. , … (Terry, Hatch) 

 

• Different routes to dissipation have been addressed theoretically: 

• Critical balance (Goldreich-Sridhar, Schekochihin, M. Barnes): balance 

nonlinear  dynamics with linear || dynamics 

– 2D perpendicular nonlinearity at different parallel locations creates fine parallel 

structure (k|| )  through Landau damping generates fine v|| structure  

dissipation through collisions 

– Can happen at all k scales 

– Simple scaling argument reproduces transport scaling 

• Nonlinear phase mixing (Hammett, Dorland, Schekochihin, Tatsuno):  

– At sufficient amplitude, gyroaveraged nonlinear term δvE ⋅ ∇δf ∼ J0
k⊥v⊥

Ω
δvE ⋅

∇δf generates structure in 𝜇~𝑣⊥
2  dissipation through collisions 
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While orders faster than GK, reduced GF 

models still slow for predictive modeling 

• Current research  train neural nets on expansive database 

of GF model predictions to use in predictive models (Citrin) 

 

 

 

 

• Sufficient speed up enables real-time control or faster-than-

real-time forecasting 

Multi-scale 

gyrokinetics 

Gyrofluid 

transport model 

NN evaluation of 

GF model 

~1010 cpu-sec ~100 cpu-sec ~10-5 cpu-sec 
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Summary 

• Magnetized turbulent transport models fundamentally use 

quasi-linear calculation of cross-phases plus mixing-length 

like saturation estimates 

 

• Have shown a number of successes in reproducing first-

principles simulations 

 

• As always, discrepancies (and failures) increase moving 

towards the edge  a frontier of turbulence and transport 

modeling 


