

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Large Scale Data Analysis Case Study: NSTX-U Langmuir Probes

MA Jaworski

Princeton Plasma Physics Laboratory, Princeton NJ

Princeton Plasma Physics Laboratory Graduate Summer School Guest Lecture – August 17th, 2018

*Work supported by DOE contract DE-AC02-09CH11466

Outline of Material

- Will you have too much data and why that means you have to think
- Strategies for attacking your data
- Langmuir Probes as a case study of where things fall apart
- Extracting Electron Distribution Functions: practical aspects and recommended practices

Diverted tokamaks are the most developed concept for MFE

- Magnetic fields confine plasma in toroidal geometry
- Divertors developed to separate eroded material from core plasma

A lot of processes

 happen in dense
 region at target plate –
 we need to diagnose it!

Array of plasma diagnostics utilized during experiments

- Local plasma conditions and PFC currents measured with Langmuir probe system
- 2D fast-cameras provide nearly full toroidal coverage of divertor

How much data is this?

- Each I-V characteristic can be a single "data set"
 - -250 kHz sampling frequency on digitizer
 - -500 Hz sweep rate, 2 V-sweeps per cycle
 - -1000 sweeps per 1s discharge per probe
 - -2000 shots per year

• 2000*1000*4 = 8 Million data sets in 1 year

• What are the bigger picture questions and strategies needed to pare this down?

What if I just analyze all the data by hand?

- Just not practical, but even if it were: would you want to?
- Scientific reporting is to provide sufficient information to replicate the work
 - Hand analysis means *you* are making decisions during analysis
 - If *you* are integral to analysis, no one else can repeat it!
- Systematic analysis allows study of the method itself
- Avoids "cherry-picking" if its systematic

Outline of Material

- Will you have too much data and why that means you have to think
- Strategies for attacking your data
- Langmuir Probes as a case study of where things fall apart
- Extracting Electron Distribution Functions: practical aspects and recommended practices

Strategies for data analysis

- 1. Know what you want to get from the data!
 - E.g. I want the most accurate Ne and Te in divertor
 - E.g. I want the post-ELM evolution in the divertor
- 2. Know what you don't want in your data sets!
 - E.g. I don't want to analyze turbulent plasmas
 - E.g. I *do* want to analyze turbulent plasmas
- 3. Be Selective using 1 and 2!
 - Large data sets means you can "afford" to throw some things away
 Don't slow yourself down analyzing every single case
- 4. Build in consistency checks (recommended practice)
 - Ensure your systematic analysis is being correctly implemented

Outline of Material

- Will you have too much data and why that means you have to think
- Strategies for attacking your data
- Langmuir Probes as a case study of where things fall apart
- Extracting Electron Distribution Functions: practical aspects and recommended practices

Langmuir probes as case study

- The (almost) original plasma diagnostic (I. Langmuir 1881-1957)
- "Simple to implement; hard to interpret"
- Integrated measure of charged particles in plasma
- LP theory is deep and complex, lots of regimes of operation (see Demidov 2002)
- Perturbative diagnostic (at least locally)

Irving Langmuir (source: wikipedia)

Many assumptions in "text-book" theory fall down

- Typical method:
 - Subtract ion saturation; fit exponential curve to electron current
 - Derive Ne from Te + Isat + plasma species
- Most derivations do not include magnetization
- Collisionality can be accounted for (see Laframboise method)
- Assumptions of Maxwellian distribution not always good to make

Classical interpretation often yields higher temperatures relative to other diagnostics

- •Classical interpretation makes use of data up to floating potential
 - Assumes single Maxwellian distribution
 - Only uses ~5% of distribution
- Independent measurements often indicate lower temperatures
 - Thomson scattering on ASDEX had some indications of non-Max. pops.
 - Thomson scattering on DIII-D consistently lower T_e
 - Anomalously low sheath heat transmission coeff. on numerous machines

NSTX-U

Why expect a Maxwellian distribution?

- •Maxwellian plasmas assumed due to plasma collisionality
 - Collisionality often calculated based on system length¹
- Numerous modeling studies indicate non-Maxwellian distributions
 - Target plasmas result in low T_e and high N_e – yield large collisionalities in the divertor
 - Non-Maxwellian distributions still obtained
- Temperature scale length requires consideration as well

¹ PC Stangeby, "The Plasma Boundary of Magnetic Fusion Devices", IoP, 2000.

Other exmples: Fokker-Planck: Chodura, CPP, 1992 PIC modeling: Tskhakaya, JNM, 2011

NSTX-U

Collisionality Must Be Calculated with the Correct Scale Length

- Chodura, in 1992, pointed out the importance of local temperature scale length
- Application of Chodura criterion suggests simple limits for thermal conduction
 - Based on moments of electron distribution function
 - Most heat-carrying electrons have 3-5x thermal velocity

NSTX divertor plasmas indicate T_e>15eV for fluid conduction to hold

Temperature gradient scale length

Chodura criteria due to energetic electrons carrying heat

Scaling of minimum temperature to satisfy Chodura collisionality req.

Jaworski JNM 2013

Kinetic probe interpretation provides more complete analysis of IV characteristics

- •When electron energy scale length much longer than probe perturbation scale, velocity "diffusion" term negligible
 - $f(r,v) \rightarrow f(x,W)$
 - W is total energy
 - f₀ is distribution far from probe
- •Solution for probe characteristic determined j_e by geometry and diffusivity
 - In magnetized plasma, cross-field diffusivity scales with Larmor radius
 - Diffusivity parameter takes form $\psi(W) = \psi_0 W^{-1/2}$ in this case
- •When $\psi_0 >> 1$, first derivative becomes proportional to distribution function
- Demonstrated on CASTOR tokamak

$$x = r \qquad W = \frac{1}{2}mv^2 + e\phi(x)$$
$$\lambda_{\epsilon} \gg r_s$$
$$\nabla_x D_x(W) \nabla_x f_0 = 0$$

$$(V) = \frac{8\pi e}{3m^2\gamma} \int_{eV}^{\infty} \frac{(W - eV)f_0(W)dW}{1 + \frac{W - eV}{W}\psi(W)}$$

$$\psi(W) = \frac{1}{\gamma\lambda(W)} \int_{a}^{\infty} \frac{D(W) \mathrm{dr}}{\left(\frac{r}{a}\right) D(W - e\phi)}$$

$$\frac{\mathrm{d}j_e(V)}{\mathrm{d}V} \propto \frac{(eV)^{3/2}}{\psi_0} f_0(eV)$$

Bernstein, Phys.Rev., 1954 Golubovskii, Sov.J.Plasma Phys, 1981 Arslanbekov, PSST, 1994 Demidov, PoP, 1999 Popov, PPCF, 2009 Godyak, Demidov, J.Phys:D, 2011

Non-Maxwellian distributions likely: motivates kinetic Langmuir probe interpretation

- •Fluid-based reconstruction (OEDGE) indicates conduction-limited regime violates Chodura conditions
- •Kinetic Langmuir probe interpretation theory developed over 30 years ago
 - •Golubovsky 1981 first application to highpressure discharges
 - •Arslanbekov 1994 application to highpressure and magnetized discharges
 - Popov 2009 application to tokamak edge region at midplane
- In the right conditions, *first* derivative becomes proportional to distribution function

Popov, PPCF, 2009; Jaworski FED 2012, Jaworski JNM 2013

NSTX-U

Bi-modal distributions observed in NSTX divertor

Typical distributions shown

- Scrape-off layer plasma where classical T_e~15eV
- Private plasma example demonstrating T_e~1eV
- Ion current effects due to sheath growth estimated to avoid including in fits^{1,2}
- Bi-modal distribution often "best" model
- •Total density calculated from I_{sat}
 - Sound speed calculated using mixture of both plasma populations³

¹ Gunn, RSI, 1997; ² Godyak, Demidov, J.Appl.Phys.D, 2011; ³ PC Stangeby, PPCF, 1995

NSTX-U

Bi-modal distributions observed in NSTX divertor

NSTX-U

Empirical plasma reconstruction provides framework for checking consistency between diagnostics

- Utilizes measured data points as starting point in constraining plasma models
- Solution improves as more and more data constrains background
- •OEDGE code suite used here: Onion-Skin Method (OSM2)+EIRENE+DIVIMP
 - OSM2 fluid solver
 - EIRENE neutral hydrogen
 - DIVIMP Monte Carlo impurities
- •Utilized here to provide fluid background and identify candidate diagnostics for comparison

Spectroscopy provides independent checks on density and temperature

- •Divertor spectrometer viewing strike-point region during discharge
- •Deuterium Balmer lines shown in this spectra
- •Pressure broadening analysis indicates density of **3.6x10²⁰ m⁻³** (mean, 2.1-5.5x10²⁰m⁻³ min/max)
 - Existence of high-n Balmer lines indicates low temperature

Broadening measurement and CR modeling of hydrogen spectrum consistent with kinetic interpretation

Electron Temperature [eV]

30

25

20

15 10

5

0.96

- Pressure broadening yields density OEDGE plasma+neutral solution provides local parameters
- CR model calculates excited state populations for given background (Maxwellian!)
- •Brightness ratios normalized to B6 consistent with 3-5eV

R - R_{sep} [cm]

0.0

2.6

1.02

-4.3

0.98

T_e bulk

T_e tail T_e Class

Outline of Material

- Will you have too much data and why that means you have to think
- Strategies for attacking your data
- Langmuir Probes as a case study of where things fall apart
- Extracting Electron Distribution Functions: practical aspects and recommended practices

Not all models have the same knowns and unknowns!

Classical interpretation

- •Te, Ne, and Vf come out
- •Vf easily identified in I-V characteristic
- •Te extracted from exponential fit
- •Ne derived from Isat and Te

•Kinetic interpretation for EEDF

- •Entire distribution function is up for grabs!
- Energy is referenced to plasma potential (not known ahead of time)
- •Psi transport function not really known ahead of time (but can be guessed)

•If you don't know/trust the value, find consistency checks!

$$x = r \qquad W = \frac{1}{2}mv^2 + e\phi(x)$$

$$j_e(V) = \frac{8\pi e}{3m^2\gamma} \int_{eV}^{\infty} \frac{(W - eV)f_0(W)dW}{1 + \frac{W - eV}{W}\psi(W)}$$

$$\psi(W) = \frac{1}{\gamma\lambda(W)} \int_{a}^{\infty} \frac{D(W)\mathrm{dr}}{\left(\frac{r}{a}\right)D(W - e\phi)}$$

$$\frac{\mathrm{d}j_e(V)}{\mathrm{d}V} \propto \frac{(eV)^{3/2}}{\psi_0} f_0(eV)$$

NSTX-U

The EEDF algorithm for NSTX-U

- 1. Get data from central storage
- 2. Determine simple IV characteristics for starting point (classical analysis)
- 3. Perform data smoothing (first-derivative noise)
- 4. Distribution function loop
 - 1. Construct model curve based on best guess of f(E)
 - 2. Determine best Vp from model curve chi-square
 - 3. Calculate new f(E) using new Vp (also solve Psi0)
 - 4. Calculate new I-V based on f(E) and check chi-square
- 5. Calculate derived parameters (bi-modal Te, Ne, etc)
- 6. Write data files

The value of chi-square ("goodness-offit")

- Provides a quantitative value relating the model curve to the data set
- Not necessarily valuable as an absolute value
 - Should be ~1 if uncertainty correctly defined
 - Less free-parameters is better
 - Uncertainty not always well defined!
 - Should be minimized for best fits
- Be wary of "black box" fitting algorithms and traps

Consistency checks are critical!

- Make lots of plots during process development, verbose output is helpful
- Bug checking is critical are you really applying the model you intended?
- Constantly ask yourself: is my model really better than another one?
- CHECK IT, BE QUANTITATIVE

Other recommendations

- COMMENT YOUR CODE
 - You won't know when you'll get back to it or put it down
 - Comment while its fresh in your mind
- Remember what research is: you get to learn when you are wrong!

Thank you!

- Will you have too much data and why that means you have to think
- Strategies for attacking your data
- Langmuir Probes as a case study of where things fall apart
- Extracting Electron Distribution Functions: practical aspects and recommended practices