LASER-AIDED PLASMA DIAGNOSTICS: A BRIEF OVERVIEW # Ahmed Diallo (艾哈迈德 迪亚洛) Research Physicist Princeton Plasma Physics Laboratory, NJ. 2018 Graduate Summer School @ Princeton Plasma Physics Laboratory Many thanks to S. Tsikata and K. Falk sharing some of their material. ### **OUTLINE** ➤ Brief definition of lasers - ➤ Laser as a tool for plasma diagnostics - Ion velocity distribution function via LIF - Laser for plasma interferometry - Laser scattering as a tool to probe the plasma Summary ## INTERACTION OF LIGHT AND MATTER In 1917 Einstein introduced a model of the interaction of radiation and matter. #### absorption: an incident photon is absorbed while the atomic state is elevated from energy level E_1 to E_2 #### Radiative processes: #### spontaneous emission: a photon is emitted while the atomic system descends from energy level E_2 to E_1 #### stimulated emission: an additional photon is emitted when an atomic system is under the action of an incident photon→ light amplification / LASER #### LIGHT AMPLIFICATION IS NOT COMMON IN NATURE - > Thermal equilibrium between light and matter - Absorption of light is much more dominant over gain because of the Boltzmann's distribution of matter. ➤ Probability for transitions resulting in emission at optical frequencies at room temperature is about e⁻⁴⁰ # LIGHT AMPLIFICATION/POPULATION INVERSION Population per state must be greater in the upper state than in the lower state: this is called population inversion - Condition for the required population inversion: - Selective pumping: upper level is pumped more rapidly than lower level - Favorable lifetime ratio - Favorable degeneracy Need some sort of external pump to raise atomic population from lower to upper energy level #### **EXAMPLE OF PUMPING** #### **OUTLINE** ➤ Brief definition of lasers - ➤ Laser as a tool for plasma diagnostics - Ion velocity distribution function via Laser-Induced Fluorescence - Laser for plasma interferometry - Laser scattering as a tool to probe the plasma > Summary # LASER-INDUCED-FLUORESCENCE (LIF) Optical diagnostic technique that provides local measurements of the velocity distribution function (ions or neutrals) - \succ Knowledge of distribution function $f(\mathbf{x}, \mathbf{v}, t)$ for each species can help understand phenomena: - Vlasov equation - Landau damping - Ion heating by waves - Other moments can be determined! ## PRINCIPLE AND GOVERNING EQUATIONS Assume the laser beam propagating through a plasma ➤ The absorption rate can be described: Where $$L(\omega)= rac{1}{2\pi} rac{\gamma^2}{(\omega-\omega_0)^2+(rac{\gamma}{2})^2}$$ # PRINCIPLE AND GOVERNING EQUATIONS $$\frac{\mathcal{W}(\mathbf{v})}{\gamma} \ll 1$$ Moderate pumping $$f_2(\mathbf{v}) = \frac{\mathcal{W}(\mathbf{v})}{\gamma} f_1(\mathbf{v})$$ Ion velocity distribution of the excited state - Assume the laser beam propagating through a plasma - ➤ The absorption rate can be described: $$\mathcal{W}(\mathbf{v}) = \frac{\lambda_0^2 I_0}{8\pi h \omega_0} \gamma \int d\omega \Phi(\omega) L(\omega - \mathbf{k_{laser}} \cdot \mathbf{v}) \text{ [photons/s]}$$ Spontaneous Laser spectral emission rate profile Ion velocity Where $$L(\omega)= rac{1}{2\pi} rac{\gamma^2}{(\omega-\omega_0)^2+(rac{\gamma}{2})^2}$$ $$\frac{dN}{d\Omega} = \frac{\gamma}{8\pi} \frac{I_0}{h\omega_0} \lambda^2 f_{k_{laser}} \left(\frac{\omega_{laser} - \omega_0}{k_{laser}} \right)$$ #Photons/s/solide angle The velocity distribution can in principle be extracted by sweeping the laser wavelength! ## PRACTICAL APPLICATION - ➤ In practice, a three-level system is preferred: facilitate the discrimination between pump and induced fluorescence. - Analysis requires the rate equation for all three levels. - ➤ LIF approach is limited to low temperature plasmas with spectral lines accessible with commercial laser. # EXAMPLE OF MEASURED AR II DISTRIBUTION FUNCTION (IVDF) Measurements are performed in a linearly magnetized Ar II plasma ## LIF IS USED TO PROBE THE IVDF VIA THE METASTABLE OF XEII Understand the contribution of ubiquitous coherent instabilities to cross-field transport of thrusters #### START BY THE HARMONIC DECOMPOSITION OF THE IVDF ightharpoonup We mix the above with the modulation of the laser beam (ω_{laser}), and observed for each ion velocity class and spatial location: $$f(t, \mathbf{x}, \mathbf{v}) = f^{0}(\mathbf{x}, \mathbf{v}) + \sum_{n>0} f^{n}(\mathbf{x}, \mathbf{v}) \sin(n\omega_{D}t + \theta_{n}(\mathbf{x}, \mathbf{v}))$$ Time-averaged IVDF breathing mode $$f^{0}(\mathbf{x}, \mathbf{v}) \rightarrow \omega_{laser}$$ $f^{1}(\mathbf{x}, \mathbf{v}) \rightarrow \omega_{laser} \pm \omega_{D}$ $f^{n}(\mathbf{x}, \mathbf{v}) \rightarrow \omega_{laser} \pm n\omega_{D}$... and the IVDF(t) can be reconstructed! # HARMONIC BASED RECONSTRUCTION OF THE TIME-RESOLVED IVDF (WITH UP TO N=1) # OPTICAL TAGGING: ADVANCED LIF ➤ Optical tagging enables to track the evolution of a small volume in phase space. #### OTHER LIF APPLICATIONS - ➤ Using the Stark effect, on can probe the local electric field: - caveat: this is possible if the various broadening mechanisms are small. - > Please describe the various broadening mechanisms? - To circumvent the broadening issues, we have proposed a method probing the Rydberg state directly. Reymond, Diallo, Vekselman, "Using Laser-Induced Rydberg Spectroscopy diagnostic for direct measurements of the local electric field in the edge region of NSTX/NSTX-U: Modeling", Review of Scientific Instrument, vol. 89, 10C 106, 2018. ➤ In certain case (weak field), LIF can provide measurements of the local magnetic field via Zeeman effect. #### **OUTLINE** ➤ Brief definition of lasers - ➤ Laser as a tool for plasma diagnostics - Ion velocity distribution function via LIF - Laser for plasma interferometry - Laser scattering as a tool to probe the plasma > Summary ## BASICS OF LASER INTERFEROMETRY - > Relies on measurements of plasma optical refractivity - - The index of refraction is given: $$n = \left(1 - \frac{\omega_p^2}{\omega^2}\right)^{1/2} \sim 1 - \frac{1}{2} \frac{\omega_p^2}{\omega^2}$$ Plasma frequency $$\omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}}$$ > Observations of the shift of the interference fringes with and without intervening gas ## THINGS TO CONSIDER - \succ Good interferometric techniques should allow fringe shifts of 1/100 λ - Example: for λ = 500 nm, a minimum detectable electron density is about 10¹⁶ electrons/cm³ > What if there are **non-electronic** contributions to the index of refraction? Number density of atoms $$n-1=2\pi\alpha n_a \qquad \qquad \lambda_1\Delta\phi_1=\left[-\frac{1}{2}\frac{\nu_p^2}{c^2}+(n_a-1)\right]L$$ Polarizability ➤ Electronic effects can be separated from atomic effects by making fringe-shift measurements at two different wavelengths (can be also used to separate mechanic vibrations). $$\lambda_1 \Delta \phi_1 - \lambda_1 \Delta \phi_2 = -\frac{1}{2} \frac{\nu_p^2}{c^2} L \left[\lambda_1^2 - \lambda_2^2 \right]$$ #### **OUTLINE** ➤ Brief definition of lasers - ➤ Laser as a tool for plasma diagnostics - Ion velocity distribution function via LIF - Laser for plasma interferometry - Laser scattering as a tool to probe the plasma > Summary #### SCATTERING OF LASER RADIATION BY PLASMA PARTICLE The scattering of laser radiation by plasma particles is an extremely important tool in the diagnosis of plasmas and in studying microscopic fluctuation phenomena occurring in plasmas. Important for characterizing the plasmas through the determination of electron and ion temperatures and the electron density. Important to the kinetic theory of a system of interacting, charged particles by characterizing instabilities in most laboratory plasmas. ## THOMSON SCATTERING: WHAT IS IT ALL ABOUT? Sir J,J Thomson 1856-1940 English physicist and Nobel laureate in physics, credited with the discovery and identification of the electron; and with the discovery of the first subatomic particle. Plasma in scattering volume # THOMSON SCATTERING (TS) APPROACH - > Thomson scattering is a powerful and non-perturbing diagnostic technique. - ➤ It provides detailed information about the electron density and temperature. TS provides direct and localized measurements of electrons properties ## GENERAL THOMSON SCATTERING SCHEME Picture from H. Meiden thesis ## RELATIVISTIC THOMSON SCATTERING - ESTIMATES FOR ITER $T_{ m e}=40~{ m keV}:v=1.2 imes10^8~{ m m/s}$ o $eta= rac{v}{c}\sim0.4$ The B-field of the light wave cannot be neglect $$\mathbf{E} \text{ and } \mathbf{B}: \ \mathrm{E}_{\mathrm{laser}} = 5 \ \mathrm{J} \ @ \ 200 \ \mathrm{ps} \rightarrow 25 \ \mathrm{GW}$$ Beam diameter = 5 cm \rightarrow Poynting vector is $\mathbf{S} = \mathbf{E} \times \mathbf{H}$ $$S = 1.27 \times 10^{13} \text{W/m}^2$$ $$S = \frac{1}{2}\epsilon_0 cE^2 \to E \simeq 10^8 \text{V/m} \text{ and } B = \frac{E}{c} \simeq 0.3 \text{T}$$ Typical velocity acquired by the electron in the field of the light wave $$v = \frac{eE}{m_0\omega}\sin(\omega t) \simeq 3 \times 10^4 \text{m/s assuming } \lambda_i = 1064 \text{ nm}$$ This is considerably less than the actual electron velocities, so the laser beam does not influence the electron motion ("unperturbed electron velocity approximation"). ### Equation of motion for an electron $$\frac{d}{dt} \left[\frac{m_0 \mathbf{v}}{\sqrt{1 - v^2/c^2}} \right] = -e \left(\mathbf{E}_i + \mathbf{v} \times \mathbf{B}_i \right)$$ in field of light wave (laser) #### Scattered electric field $$\mathbf{E}_{s} = -\frac{e}{4\pi\epsilon_{0}} \left[\frac{1}{(1-\beta\cdot\hat{\mathbf{s}})^{3}Rc} \hat{s} \times (\hat{s} - \beta) \times \partial_{t} \beta \right]_{retarded}$$ Lienard-Wiechert potentials for a moving charge #### Thomson spectrum! #### Coordinate system #### Velocity distribution $$f(\beta) = \frac{\alpha}{2\pi K_2(2\alpha)} \frac{\exp(-2\alpha(1-\beta^2)^{-1/2})}{(1-\beta^2)^{5/2}}$$ $$\alpha = m_0 c^2 / 2kT$$ $K_2(2lpha)$ is the modified Bessel function of second order and second kind. ## SCATTERING GEOMETRY DEFINITION ➤ the observation wave vector properties are defined by the incident wave vector and direction of detection $$\mathbf{k}=\mathbf{k}_s-\mathbf{k}_i$$ Bragg relation $\omega=\omega_s-\omega_i$ $$|k| \cong 2 |k_i| \sin(\theta/2)$$ ## SINGLE ELECTRON SCATTERING ➤ Power per unit solid angle scattered by electron $$\frac{dP}{d\Omega} = r_e^2 \sin^2 \phi \, c\varepsilon_0 \, |E_i^2|$$ ➤ It is common to define a differential crosssection ratio of scattered power to incident power per unit area $$\frac{d\sigma}{d\Omega} = r_e^2 \sin^2 \phi$$ total Thomson scattering cross-section for an electron $$\sigma = \frac{8\pi}{3}r_{\epsilon}^{2}$$ $$r_e = 2.82 \times 10^{-15} \text{m}$$ ## THOMSON SCATTERED POWER General form of the Thomson scattered power per unit solid angle, a distance R from the scattering volume $$\frac{dP}{d\Omega} = \frac{cR^2}{4\pi} \left(\sum_{j=1}^{N} \mathbf{E}_{js} \sum_{l=1}^{N} \mathbf{E}_{ls} \right) \qquad \mathbf{E}_{s} = \text{scattered electric field}$$ N = number of particles or, separating terms into j = l, and $j \neq l$: $$\frac{dP}{d\Omega} = \frac{cR^2}{4\pi} \left(\frac{NE_s^2}{2} + N(N-1) \overline{(\mathbf{E}_j \cdot \mathbf{E}_l)}_{j \neq l} \right)$$ Two different scattering regimes emerge ## INCOHERENT VS COHERENT THOMSON SCATTERING The scale length for scattering is $2\pi/k$ - resolution - $\lambda_D = \sqrt{\frac{\varepsilon_0 k_B T_e}{e^2 n_e}}$ - ightharpoonup Correlated interactions between the plasma electrons only occur at or above a certain scale length so called Debye length $\lambda_{D.}$ ## INCOHERENT THOMSON SCATTERING #### **Dominant term** $$\frac{dP}{d\Omega} = \frac{cR^2}{4\pi} \left(\frac{NE_s^2}{2} + N(N-1) \overline{(\mathbf{E_j \cdot E_l})}_{j \neq l} \right)$$ ## INFORMATION FROM INCOHERENT THOMSON SCATTERING Scattered power Electron density $$P_s = P_i n_e \Delta L \Omega \frac{d\sigma_T}{d\Omega} S(\mathbf{k}, \omega)$$ Injected power Injected power spectr spectral density function or form factor $$S(\mathbf{k}, \omega) = \int_{-\infty}^{+\infty} F_k(v_k) \delta[\omega_i - \omega_s(\mathbf{v})] dv_k$$ velocity distribution function along k $$F_k(v_k) = \frac{1}{c_0\sqrt{\pi}} \exp[-(v_k/a)^2] \qquad \text{where } c_0 = \sqrt{\frac{2k_BT_e}{m_e}}$$ #### INFORMATION FROM INCOHERENT THOMSON SCATTERING #### Scattered power The power $$P_s = P_i n_e \Delta L \Omega \frac{d\sigma_T}{d\Omega} S(\mathbf{k},\omega)$$ spectral density function or form factor $$S(\mathbf{k}, \omega) = \int_{-\infty}^{+\infty} F_k(v_k) \delta[\omega_i - \omega_s(\mathbf{v})] dv_k$$ $$\mathbf{k} = \mathbf{k}_s - \mathbf{k}_i$$ $\omega = \omega_s - \omega_i$ velocity distribution function along k $$F_k(v_k) = \frac{1}{c_0\sqrt{\pi}} \exp\left[-(v_k/a)^2\right] \qquad \text{where } c_0 = \sqrt{\frac{2k_BT_e}{m_e}}$$ scattered spectrum area proportional to $\,\eta_e$ spectrum width proportional to #### BREAKTHROUGH FOR TOKAMAKS WAS DEMONSTRATED USING THOMSON SCATTERING N.J. Peacock, D.C. Robinson, M.J. Forrest, P.D. Wilcock and V.V. Sannikov in "Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3", Nature Vol. 224, November 1, 1969 Drawing from the talk "Evolution of the Tokamak" given in 1988 by B.B. Kadomtsev at Culham. ### PROFILES FOR THE LAST NSTX-U CAMPAIGN #### COHERENT THOMSON SCATTERING Recall general form for scattered power: $$\frac{dP}{d\Omega} = \frac{cR^2}{4\pi} \left(\frac{NE_s^2}{2} + N(N-1) \overline{(\mathbf{E_j \cdot E_l})}_{j \neq l} \right)$$ coherent scattering: particle positions **not** random, instead correlated **>>>** phases add up constructively this term now dominates $$\frac{dP}{d\Omega} = \frac{cR^2}{4\pi} \left(\frac{NE_s^2}{2} + N(N-1) \overline{(\mathbf{E_j \cdot E_l})}_{j \neq l} \right)$$ Scattering takes place on structured "bunches" of electrons For observation length scale is larger than the electron screening length #### INFORMATION FROM COHERENT SCATTERING spectral density function/form factor #### Scattered power d power $$P(\mathbf{R}, \omega_s) \ d\Omega d\omega_s = \frac{P_i r_e^2}{A2\pi} \ d\Omega d\omega \ \left| \hat{s} \times (\hat{s} \times \hat{E_{io}}) \right|^2 NS(\mathbf{k}, \omega)$$ $$S(\mathbf{k}, \omega) \equiv \lim_{T \to \infty, V \to \infty} \frac{1}{TV} \left\langle \frac{|n_e(\mathbf{k}, \omega)|^2}{n_o} \right\rangle \qquad \mathbf{k} = \mathbf{k}_s - \mathbf{k}_i$$ $$\omega = \omega_s - \omega_i$$ - density fluctuations visible depending on scale observed - > electrons and ions have distinct contributions to the form factor in the collective scattering regime: - highly complex information depending on the plasma properties! # high frequency fluctuations linked to fast electron dynamics # low frequency fluctuations linked to slower ion dynamics $\omega_{pe},~\omega_{pi}~$: electron, ion plasma frequencies - natural oscillation frequencies $lpha \equiv 1/k\lambda_D$: scattering parameter (> 1 = coherent regime) Z: ion charge T_e , T_i : electron, ion temperatures Froula, Glenzer, Luhmann and Sheffield Plasma scattering of electromagnetic radiation Acad. Press, 2nd edition # APPLICATIONS TO WARM DENSE MATTER (WDM) WDM is an intermediate state between solids and plasmas: temperature: 1 - 100 eV, density: $\sim 1 \text{ g/cm}^3$ (solid densities) Ions are strongly coupled Electrons are fully or partially degenerate The equation of state of light elements is essential to understanding the structure of Jovian planets and inertial confinement fusion (ICF) experiments. The equation of state (EOS) in the WDM regime is largely unknown. #### Plasma screening length # X-RAY THOMSON SCATTERING (XRTS) $k = (4\pi/\lambda_0)\sin(\theta/2)$ Scattering vector: #### Spectrometer (Debye length) (Thomas-Fermi length) #### Scattering parameter: $$\alpha = 1/k\lambda_S$$ ### Dynamic structure factor (Chihara 1987, 2000): $$S_{ee}^{tot}(k,\omega) = |f_I(k) + q(k)|^2 S_{ii}(k,\omega) + Z_f S_{ee}^0(k,\omega) + Z_c \int \tilde{S}_{ce}(k,\omega - \omega') S_s(k,\omega') d\omega'$$ $$\alpha < 1$$ non-collective Bound electrons/ following motion of the ions Free/delocalized electrons (off individual electrons) #### XRTS IN WARM DENSE DEUTERIUM Rayleigh peak: elastic scattering (bound electrons) Compton peak: inelastic scattering (free/metallic electrons) - ➤ Determine the elements of the EOS from features of the scattering spectra: - Te from width of the inelastic peak - Ne from the downshift of the plasmon peak - Ion temperature from electric scattering strength - Average ionization state from intensity ratio of Rayleigh and Compton peaks - Atomics structure from bound-free tail contribution Froula, Glenzer, Luhmann and Sheffield Plasma scattering of electromagnetic radiation Acad. Press, 2nd edition #### SUMMARY ➤ Brief description of lasers ➤ Optical diagnostic technique that provides local measurements of the ion velocity distribution function. ➤ Laser for plasma interferometry Laser scattering as a tool to probe the plasma: Incoherent vs coherent Thomson scattering and finally XRTS. #### LITERATURE FOR THOMSON SCATTERING — IF YOU ARE INTERESTED - ➤ Pechacek and Trivelpiece (Phys. Fluids, Vol 10, 1668 (1967)) - first consistent treatment of relativistic Thomson scattering - Sheffield (Plasma Scattering of Electromagnetic Radiation, Academic Press, New York, 1975) - carried out a relativistic correction to first order in v/c (15% error at 25 keV) - ➤ Zhuravlev and Petrov (Sov. J. Plasma Phys., Vol 5, 3 (1979)) - integrated the relativistic scattering integral analytically (neglecting depolarization). - > Selden (Phys. Lett., Vol 79A, 405 (1980)) - used the analytic formula of Zhurvlev and Petrov with a stated accuracy of approximately 1% up to 100 keV. - ➤ Matoba et al (Jap. J. Appl. Phys., Vol. 18, No. 6, 1127 (1979)) - derived an integral equation and approximated this by an analytic expression to second order in v/c (10% error at 25 keV) - ➤ Naito et al (Phys. Fluids B, Vol. 5, No. 11, 4256, (1993)) - derived an analytic formula using the treatment of Hutchinson (Principles of Plasma Diagnostics, Cambridge University Press 1987) with depolarization taken into account, and they went on to derive a rational approximation with high accuracy (error < 0.1% at 100 keV) - ➤ I. H. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press 1987. ## BACKUP X #### INTRA-CAVITY LASER INTERFEROMETRY - ➤ This approach relies on changes of the amplitude of the laser emission when the laser light is reflected back to itself by an external mirror. - Interference between the cavity oscillations and the reflected beam strongly modulates the laser intensity. Such modulation depends on the phase of the reflected beam. - Application to plasmas: modulation of the laser intensity is related to the changes of the index of refraction. #### GENERAL CONSIDERATIONS - > Spectrally resolved detection systems. - Avalanche photo-Diodes. Cascade of interference filters 3 – 8 wavelength channels 1 APD for each wavelength T.N. Carlstom *et al.*, RSI **63** (1992) 4901 Assume Maxwellian electron distribution! #### GENERAL CONSIDERATIONS - Spectrally resolved detection systems. - Intensified image detectors. - Avalanche photo-Diodes. - ➤ Light Detection and Ranging (LIDAR) TS system - The measurement position can be retrieved from time of flight of the laser pulse. - The spatial resolution is determined by the physical length of the laser pulse and the temporal response of the detection system. - > spatial resolution is in the range of 50 100 mm - ➤ Of interest for large fusion devices JET & ITER ## REQUIRED LASER POWER AND DETECTION EFFICIENCY | number of | E | $d\sigma_{T}$ | |----------------|---------------------------|------------------------------------------------------------| | photoelectrons | $N_{pe} = \frac{1}{hv_0}$ | $\Delta L\Omega n_e \frac{1}{d\Omega} \tau_{overall} \eta$ | | Parameters | Symbol | Units/Remarks | |---------------------------------|-----------------------------------------|---------------| | Energy per laser pulse | E | J | | f-number of viewing lens | f/nr | rad | | Solid angle | $\Omega = \pi (f/nr)/4$ | sr | | Length of the scattering volume | ΔL | m | | Differential cross-section | $d\sigma T/d\Omega = 7.94 \times 10-30$ | m2/sr | | Overall transmission | τοverall | | | Effective quantum efficiency | η | % | | Electron density | ne | m-3 | ### **CALIBRATIONS** - Absolute calibration using a known gas pressure - ➤ This can be done using Raman or Raleigh scattering to determine the ABSOLUTE sensitivity of the detection 51