Investigation of Nitrogen Molecular Dynamics and Reaction Kinetics in an Industrial Ozone Generator

PI: Daniel E. Guerrero

Research Collaborators: Dr. Alfred Freilich, Dr. Stephen Kelty & Dr. Jose L. Lopez

Outline

- Introduction to Ozone Generation
- The Role of Nitrogen
- Preliminary Experiments
- Future Work
- Conclusion

What is Ozone?

- Tri-atomic form of oxygen.
- Most powerful commercial oxidizing agent available (E⁰ = +2.07V).
- Unstable must be generated and used onsite.
- Leaves a dissolved residual which ultimately converts back to oxygen.
- Relatively easy to manufacture.

The resonance forms of ozone

Figure 1. The 'averaged' structure of ozone showing the delocalized molecular orbital.

Figure 3. Ozone disinfection bubble diffusers.

Generation of Ozone

$$3 O_2 \implies 2 O_3$$

Figure 5. Water-cooled reactor with pure O₂ at 1.1 bar pressure and constant input power of 160 Watts.

5

SETON HA

Why Use Nitrogen?

Figure 6. Plot of ozone production as a function of time with and without N_2 .

Figure 7. Plot of ozone production efficiency as a function of N_2 inclusion at constant power density and temperature

5

VERSI

SETON HA

Plasma Temp. Study – Setup 1

Fig. 4. Configuration of the ozone generator.

Computer/Recorder

UV Emission Spectra – Setup 1

Preliminary Results – Setup 1

Preliminary Results – Setup 2

For measuring the temperature a type K thermocouple was glued with epoxy resin to the inner side of an LG-03 segment. The segment is a fairly massive metal body with a thin ceramic coating and no gas flow inside it. For this reason it is fair to assume that after a long enough operation time the temperature of the segment will be well homogenous and the measurement performed on the inner surface will be representative of the temperature on the ceramic surface.

Figure 2: Detail of the experimental setup. The thermocouple is drawn along the piping and the homemade feedthrough.

Effect of N₂ Conc. on Gas Temp.

Effect of N₂ on Gas Temp. Cont.

H₂O Temp and Pressure Effects

Target Values				Measured Values						
Trial #	Applied Power (kW/m^2)	Cooling Water Temp ©	Pressure (bars abs)	Applied Power (kW/m^2)	O3 (g/Nm^3)	Cooling Water Temp (deg C)	Outer Electrode Temp ©	Inner Electode Temp ©	Cooling Water Temp - Outer Electrode Temp ©	Gap Temp ©
1	2.0	3	2.2	2.12	113.4	5.7	7.3	14.5	1.6	8.8
4	2.0	5	2.2	2.23	113.1	17.2	19.1	28.3	1.9	11.1
7	2.0	3	2.2	2.19	112.7	30.3	30.0	42.0	-0.3	11.7
5	3.5	3	2.2	3.52	148.8	17.6	19.8	37.2	2.2	19.6
2	3.5	5	2.2	3.41	153.5	5.2	8.2	23.5	3.0	18.3
8	3.5	5	2.2	3.52	140.5	29.7	29.1	48.4	-0.6	18.7
3	5.0	3	2.2	4.96	180.0	5.3	10.6	33.3	5.3	28.0
6	5.0	5	2.2	5.01	171.5	17.3	20.7	45.5	3.4	28.2
9	5.0	30	2.2	4.96	159.5	29.9	31.0	56.4	1.1	26.5
10	3.0	17	2.2	3.11	155.0	17.3	20.7	34.5	3.4	15.5
11	5.0	17	2.2	4.97	149.0	17.2	21.0	44.5	3.8	25.4
12	3.0	17	2.2	3.12	96.2	17.1	20.1	34.8	3.0	16.2
13	5.0	17	2.2	4.98	89.7	17.5	20.9	43.8	3.4	24.6
14	3.0	17	1.6	2.99	155.4	17.6	19.6	34.4	2.0	15.8
15	5.0	17	1.6	4.75	148.2	16.9	20.9	44.6	4.0	25.7
16	3.0	17	2.8	3.21	162.7	17.4	20.1	35.6	2.7	16.9
17	5.0	17	2.8	5.15	150.4	17.6	21.5	46.6	3.9	27.1

H₂O Temp Effect

Working Hypothesis: Surface Effect

Figure 8. Time dependent evolution of ozone generation efficiency after shutdown of N_2 supply. During the experiments illustrated with solid lines, the high voltage electrode was already covered in a powder because of prior N_2 -free operation. The dashed line corresponds to N_2 shutdown initiated with no prior N_2 -free operation, i.e. a relatively powder-free electrode.

Gas Effluent After N₂ Shutoff

10 min pure 02 - 75% Pwr 10 min 10%N2 - 75% Pwr 5 min after shutoff 8 min after 11 min after n2 shutoff 15 min after n2 shutoff 20 min after N2 shutoff 25 min after n2 shutoff 30 min after n2 shutoff 35 min after N2 shutoff 40 min after n2 shutoff 45 min after N2 shutoff 50 min after N2 shutoff 60 min after n2 shutoff 75 min after n2 shutoff 90 min after n2 shutoff 105 min after n2 shutoff 120 min after N2 shutoff 155 min after N2 shutoff

Sample 017 By Researcher Date Friday, Nove... Sample 018 By Researcher Date Friday, Nove... 2 min after n2 shutoff - 75... Sample 019 By Researcher Date Friday, Nove... Sample 020 By Researcher Date Friday, Nove... Sample 021 By Researcher Date Friday, Nove... Sample 022 By Researcher Date Friday, Nove... Sample 023 By Researcher Date Friday, Nove... Sample 024 By Researcher Date Friday, Nove... Sample 025 By Researcher Date Friday, Nove... Sample 026 By Researcher Date Friday, Nove... Sample 027 By Researcher Date Friday, Nove... Sample 028 By Researcher Date Friday, Nove... Sample 029 By Researcher Date Friday, Nove... Sample 030 By Researcher Date Friday, Nove... Sample 031 By Researcher Date Friday, Nove... Sample 032 By Researcher Date Friday, Nove... Sample 033 By Researcher Date Friday, Nove... Sample 034 By Researcher Date Friday, Nove... Sample 035 By Researcher Date Friday, Nove... Sample 036 By Researcher Date Friday, Nove...

Figure 10. FT-IR plot of reaction chamber effluent as a function of time following N₂ shutoff in the feed gas.

Gas Effluent After N₂ Shutoff

Gas Effluent After N₂ Shutoff

Proposed Study

- Calculate the absorption thermodynamics (adsorption equilibria) on steel surfaces (Cr₂O₃, Fe₂O₃) by NOx adsorbates (N₂O, N₂, NO, NO₂, N₂O₅, NO₄).
- 2. Model the above results as Langmuir isotherms of physisorbed adsorbates.
- 3. Determine the temperature dependence of surface coverage from the equilibrium constants.
- 4. Compare the calculated temperature dependencies (and dominate adsorped species) against experimental evidence.

Figure 11. Input schematic of N_2O_5 on Cr_2O_3 surface.

Summary

- Nitrogen concentration appears to have a significant impact on gas temperature.
- However, the methodology by which the effects of N₂ concentration dictates gas temperature is not clear.
- Ozone production (output) also appears to be related to a surface effect on the electrode surfaces.
- A deeper investigation into the 3rd-body collisional process and surface chemistry is needed.

References

- Koppenol, W. H., Reactions Involving Singlet Oxygen and the Superoxide Anion Nature 1976, 262, 420 421.
- 2. Pietscha, G. J.; Gibalov, V. I., Dielectric Barrier Discharges and Ozone Synthesis Pure & Appl. Chem. 1998, 70, 1169-1174.
- 3. Murai, A.; Yamabe, C.; Ihara, S., A Study of Ozone Formation on the Surfaces of Electrodes Ozone: Sci Eng. 2010, 32, 153-160.
- 4. Lee, H. M.; Chang, M. B.; Wei, T. C., Kinetic Modeling of Ozone Generation Via Dielectric Barrier Discharges Ozone: Sci Eng. 2004, 26, 551-562.
- 5. Batakliev, T.; Georgiev, V.; Anachkov, M.; Rakovsky, S.; Zaikov, G. E., Ozone Decomposition Interdisp. Toxicol. 2014, 7, 47-59.
- 6. Vosko, S. H.; Wilk, L.; Nusair, M., Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis Can. J. Phys. 1980, 58 1200-1211.
- 7. Kresse, G.; Hafner, J., Ab Initio Molecular Dynamics for Liquid Metals Phys. Rev. B 1993, 47, 588.
- 8. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium Phys. Rev. B 1994, 49, 14251.
- 9. Kresse, G.; Furthmuller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set Comput. Mat. Sci. 1996, 6, 15-50.
- Kresse, G.; Furthmuller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set Phys. Rev. B 1996, 54, 11169
 SETON HALL UNIVERSITY

Acknowledgements

Funding Partners:

THANK. THANK YOU.

NO HARD QUESTIONS PLEASE

makeameme.org

Appendix

- Plasma temperature study UV emission spectroscopy, Specair analysis, thermocouple tests, & cooling water variation testing. [Slides 10 – 18]
- 2. Collisional and radiative processes within a plasma. [Slides 19 22]

Collisional and Radiative Processes

•The processes that determine the properties of non-thermal plasmas are collisions involving the plasma electrons and other plasma constituents.

•The charge carrier production is governed by

- Direct ionization of ground state atoms and/or molecules
- •Step-ionization of an atom/molecule that is already in an excited and, in particular, a long-lived metastable state

•The generation of chemically reactive free radicals by electron impact dissociation in molecular plasmas is an important precursor for plasma chemical reactions.

Electron-Atom Collisions

$e + A \rightarrow A^{*/m} + e^{*}$ $A^* \rightarrow A + hv$	Excitation of atoms Spontaneous de-excitation
$e + A^{*/m} \rightarrow A + hv + e'$	Collision-induced de-excitation
$e + A \rightarrow A^+ + e^{i}$	Ionization of atoms
$e + A^{*/m} \rightarrow A + e' + E_{kin}$	Super-elastic collisions
$e + A^m \rightarrow A^* + e^*$	Step-wise excitation
$e + A^m \rightarrow A^+ + e'$	Step-wise ionization

K. Becker and A. Belkind. 'Introduction to Plasmas'. *Vacuum Technology* & *Coating (September 2003)*

Electron-Molecule Collisions

$e + AB \rightarrow AB^{*/m} + e'$	Excitation of molecules
$AB^* \rightarrow AB + hv$	Spontaneous de-excitation
$e + AB^{*/m} \rightarrow AB + hv + e'$	Collision-induced de-excitation
$e + AB \rightarrow A^{*/m} + B + e'$	Dissociation of molecules
$e + AB \rightarrow AB^+ + e'$	Ionization of molecules
$e + AB \rightarrow A^+ + B + e'$	Dissociative ionization of molecules
$e + AB \rightarrow A^+ + B + e'$	Dissociative attachment of molecules
$e + A^+ \rightarrow A + hv$	Radiative recombination of an atomic ion
$e + A^+ + e' \rightarrow A + e'$	3-body dielectronic recombination
$e + A^+ + M \rightarrow A + M + e'$	3-body heavy particle recombination
$e + AB^{-} \rightarrow A + B$	Dissociative attachment of molecular negative ions

K. Becker and A. Belkind. 'Introduction to Plasmas'. Vacuum Technology SETON HALL

Heavy Particle Collisions

$A + B^+ \rightarrow A^+ + B$	Charge transfer
$A + B^m \rightarrow A^+ + B + e$	Penning ionization
$A^m + A^m \rightarrow A^+ + A + e$	Pair ionization
$\mathbf{A}^* + \mathbf{A} \rightarrow \mathbf{A}_2^+ + \mathbf{e}$	Hornbeck-Molnar ionization
$A^+ + BC \rightarrow AC^+ + B$	Ion-molecules reaction
$A^{*/m} + BC \rightarrow AC + B$	Chemical reaction
$R + BC \rightarrow RC + B$	Chemical reaction with plasma radical, R

UNIVERSI

6

K. Becker and A. Belkind. 'Introduction to Plasmas'. *Vacuum Technology* & *Coating (September 2003)*