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Alcator C-Mod

• Compact, high-magnetic field,
diverted tokamak

• R0 = 0.68m, a0 = 0.22m
• Primary auxiliary heating source
via minority heating (ICRF)

• Record for plasma pressure in
magnetically confined fusion
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SPARC

• Soonest/Smallest Private-Funded
Affordable Robust Compact

• Collaboration between MIT and
Commonwealth Fusion Systems
(CFS)

• Goal: Q ą 1 and about 100 MW
of heat for 10-second pulses

• HTS magnets will be key Figure 1: Visualization by Ken Filar,
PSFC research affiliate
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Confinement regimes

dS
dt = ´Ploss + Psource

= ´S
τ + Psource

• τE Ñ energy confinement time
• τP Ñ particle confinement time
• L-mode:
τE,L = 0.048(I/M A)0.85B0.2

t R1.2a0.3

(e/1020)0.1κ0.5(Ptot/MW)´0.5(mi/mp)
0.5s

• H-mode: τE,H = H ¨ τE,L where
H „ 2 and larger τP

• I-mode: L-mode’s τP with
H-mode’s τE

Figure 2: D.G. Whyte et al 2010
Nucl. Fusion 50 105005
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Exploring machine learning methods

• Further understanding of
confinement regime boundaries

• Control tokamak performance in
current and future devices

• Large-scale comparative analysis
via instant mode identification
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Figure 4: Plot by Dan Brunner
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Analyzing L-, H-, and I-modes

• Database based on Alcator C-Mod includes shots dating back to 1995
• Classifications derived from multiple sources (almost all I-modes based
on original identification by A. Hubbard or D. Whyte)

• Over 200 distinct shots consisting of approximately 400 L-, 200 H-, and
100 I-mode periods

• Quantity such as energy confinement time and/or pedestal height could
add quantitative performance measure and automate database growth

• Both multi-class classification and regression tasks involved
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Supervised learning techniques

Classification
• Gaussian naïve Bayes, Logistic Regression, Multilayer Perceptron, and
Random Forest

Regression
• Elastic Net, k-Nearest Neighbours, Multilayer Perceptron, and Random
Forest

Features
• βp, n̄, li, Ptot

• Currently 0-D data
• Profiles and time-dependency to be considered
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Supervised learning techniques: classification
Gaussian naïve Bayes

• Conditional probability model to classify an input feature vector
x = (x1, . . . , xn) into class Ck

• posterior = priorˆlikelihood
evidence ô p(Ck | x) = p(Ck ) p(x |Ck )

p(x)

• Gaussian: p(xi |Ck) =
1

2πσ2
k

exp[´ (xi´µk )
2

2σ2
k

]

• naïve: p(Ck | x1, . . . , xn) ∝ p(Ck)p(x1 | Ck)p(x2 | Ck) ¨ ¨ ¨ p(xn | Ck)

• Decision rule: ŷ = argmax
kP{1,...,K }

p(Ck)

n∏
i=1

p(xi | Ck)
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Supervised learning techniques: classification

Logistic Regression
• Binary outcome yn equals 0 or 1 (true distribution)
• pn = 1

1+e´(β0+βxn ) (estimated distribution)

• Cost: ´ 1
N

N∑
n=1

[
yn log pn + (1´ yn) log(1´ pn)

]
with L2 regularization

• Known as logistic loss or cross-entropy
• Odds: p(x)

1´p(x) = eβ0+βx

• Odds ratio: odds(xi+1)
odds(xi ) =

eβi (xi+1)

eβi xi
= eβi

• Physical meaning: odds multiply by eβi for every 1-unit increase in xi
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Supervised learning techniques: classification
Mutlilayer Perceptron

• Feedforward artificial neural network
• Fully connected with 100ˆ100ˆ100 hidden layers
• Universal function approximator (Cybenko’s theorem)
• Rectified linear unit (ReLU) activation function: f (zi) = max(0, zi)
• Optimizes logistic loss function via stochastic gradient descent
• Number of neurons in output layer equals number of classes
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Supervised learning techniques: classification
Random Forest

• Ensemble algorithm using subset of features to divide samples
• Minimize an impurity measure each split, e.g. Gini impurity:

IG(p) =
K∑
i=1

pi(1´ pi)

• 100 fully grown decision trees (i.e. all leaves pure)
• Reduces overfitting via bootstrap aggregation and pruning
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Feature selection

1. βp (0.396˘ 0.059)
2. Ptot (0.242˘ 0.062)
3. n̄ (0.223˘ 0.028)
4. li (0.139˘ 0.022)

Figure 5: Relative feature importance based on
mean decrease impurity via random forest
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Accuracy metrics

TPR = TP
TP+FN (sensitivity or recall)

TNR = TN
TN+FP (specificity)

PPV = TP
TP+FP (precision)

NPV = TN
TN+FN

ACC = TP+TN
TP+TN+FP+FN (accuracy)

MCC = TPˆTN´FPˆFN?
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Figure 6: Results averaged over
100 cycles (binary case example)
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Multi-class classification: L vs H vs I (validation)
GNB LR MLP RF

L-
mo

de

PPV 0.957˘ 0.004 0.945˘ 0.003 0.985˘ 0.003 0.989˘ 0.001
TPR 0.919˘ 0.005 0.958˘ 0.003 0.985˘ 0.003 0.991˘ 0.001
TNR 0.862˘ 0.012 0.815˘ 0.013 0.953˘ 0.011 0.964˘ 0.003
NPV 0.763˘ 0.013 0.854˘ 0.009 0.953˘ 0.009 0.972˘ 0.002
AUC 0.955˘ 0.004 0.971˘ 0.002 0.997˘ 0.000 0.998˘ 0.000
MCC 0.750˘ 0.015 0.786˘ 0.012 0.938˘ 0.006 0.958˘ 0.003

H-
mo

de

PPV 0.774˘ 0.015 0.830˘ 0.012 0.924˘ 0.015 0.954˘ 0.004
TPR 0.785˘ 0.017 0.754˘ 0.019 0.922˘ 0.018 0.937˘ 0.006
TNR 0.965˘ 0.003 0.977˘ 0.002 0.989˘ 0.003 0.994˘ 0.001
NPV 0.967˘ 0.002 0.964˘ 0.002 0.989˘ 0.002 0.991˘ 0.001
AUC 0.955˘ 0.005 0.966˘ 0.003 0.997˘ 0.001 0.998˘ 0.000
MCC 0.746˘ 0.015 0.762˘ 0.015 0.912˘ 0.009 0.938˘ 0.005

I-m
od
e

PPV 0.712˘ 0.020 0.817˘ 0.014 0.972˘ 0.008 0.984˘ 0.002
TPR 0.889˘ 0.020 0.825˘ 0.018 0.975˘ 0.008 0.987˘ 0.002
TNR 0.952˘ 0.005 0.975˘ 0.002 0.996˘ 0.001 0.998˘ 0.000
NPV 0.985˘ 0.003 0.977˘ 0.002 0.997˘ 0.001 0.998˘ 0.000
AUC 0.973˘ 0.005 0.984˘ 0.002 0.999˘ 0.000 0.999˘ 0.000
MCC 0.765˘ 0.021 0.797˘ 0.016 0.970˘ 0.004 0.984˘ 0.002
ACC 0.899˘ 0.006 0.917˘ 0.004 0.976˘ 0.002 0.984˘ 0.001
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Multi-class classification: L vs H vs I (test)
GNB LR MLP RF

L-
mo

de

PPV 0.956˘ 0.014 0.945˘ 0.013 0.941˘ 0.017 0.943˘ 0.016
TPR 0.920˘ 0.021 0.956˘ 0.013 0.944˘ 0.015 0.952˘ 0.012
TNR 0.857˘ 0.051 0.812˘ 0.048 0.794˘ 0.060 0.803˘ 0.059
NPV 0.762˘ 0.052 0.846˘ 0.044 0.806˘ 0.049 0.831˘ 0.041
AUC 0.947˘ 0.025 0.971˘ 0.009 0.954˘ 0.021 0.960˘ 0.018
MCC 0.747˘ 0.045 0.779˘ 0.041 0.742˘ 0.048 0.764˘ 0.046

H-
mo

de

PPV 0.772˘ 0.052 0.837˘ 0.053 0.734˘ 0.064 0.774˘ 0.057
TPR 0.773˘ 0.065 0.747˘ 0.066 0.884˘ 0.033 0.764˘ 0.066
TNR 0.965˘ 0.010 0.978˘ 0.008 0.958˘ 0.012 0.966˘ 0.010
NPV 0.965˘ 0.010 0.962˘ 0.010 0.961˘ 0.010 0.964˘ 0.010
AUC 0.955˘ 0.016 0.966˘ 0.012 0.952˘ 0.016 0.951˘ 0.021
MCC 0.737˘ 0.052 0.761˘ 0.052 0.777˘ 0.045 0.733˘ 0.051

I-m
od
e

PPV 0.699˘ 0.086 0.784˘ 0.080 0.792˘ 0.087 0.806˘ 0.076
TPR 0.882˘ 0.069 0.815˘ 0.076 0.753˘ 0.098 0.764˘ 0.087
TNR 0.951˘ 0.018 0.972˘ 0.011 0.975˘ 0.012 0.977˘ 0.009
NPV 0.984˘ 0.010 0.977˘ 0.009 0.968˘ 0.015 0.970˘ 0.014
AUC 0.953˘ 0.042 0.981˘ 0.008 0.957˘ 0.047 0.969˘ 0.025
MCC 0.753˘ 0.058 0.773˘ 0.066 0.742˘ 0.074 0.757˘ 0.071
ACC 0.898˘ 0.016 0.915˘ 0.014 0.898˘ 0.018 0.908˘ 0.016

Abhilash Mathews PPPL GSS August 14, 2018 16 / 21



Shot 1160930033

Abhilash Mathews PPPL GSS August 14, 2018 17 / 21



Shot 1160930033
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Control
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Conclusion

Summary

Results:
• Development of extensive database involving variety of shots in L-, H-,
and I-mode phases

• Capability to instantly identify shots on Alcator C-Mod
• Opens pathway to further investigate relationships such as energy
confinement time scaling laws in different regimes

• Can explore parameter space not necessarily tested in past experiments to
predict probable outcome and assess feature importance
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Conclusion

Summary

To do:
• Development of regression technique for energy confinement time
possibly coupled with confinement identification

• Incorporate relevant and readily available spatial and time-dependent
quantities for predictive purposes

• Sensitivity analysis and consideration of weaknesses in developing
control for real-time application to optimize fusion power output

• Cross-machine implementation and validation (possibly combining
disruption predictor)
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Extra

Extra Slides
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Extra

Extra: Feature selection

Multiple ways to partition data
without a necessarily unique solution
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Extra

Extra: Feature selection

Figure 7: Correlation matrix
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Extra

Extra: Features

li =
〈B2

θ〉P
B2
θ (a)
=

2π
∫ a

0 B2
θ (ρ)ρdρ

πa2B2
θ (a)

(for circular cross section plasmas)

Using Ampère’s Law (2πaBθ(a) = µ0I), one obtains

li =
Li

2πR0
4π
µ0
=

2Li

µ0R0
where 1

2 Li I2 =
∫
P

B2

2µ0
dV

(internal inductance is a volume integral only over the plasma)

Ptot = PRF + Pohm

βp =
〈p〉

B2
θ /2µ0
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Extra

Extra: Control
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Extra

A binary choice model assumes a latent variable Un, the utility (or net benefit)
that person n obtains from taking an action (as opposed to not taking the
action). The utility the person obtains from taking the action depends on the
characteristics of the person, some of which are observed by the researcher
and some are not: Un = β ¨ sn + εn where β is a set of regression coefficients
and sn is a set of independent variables (also known as "features") describing
person n, which may be either discrete dummy variables or regular continuous
variables. εn is a random variable specifying "noise" or "error" in the
prediction, assumed to be distributed according to some distribution.
Normally, if there is a mean or variance parameter in the distribution, it cannot
be identified, so the parameters are set to convenient values — by convention
usually mean 0, variance 1.
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Extra

The person takes the action, yn = 1, if Un ą 0. The unobserved term, εn, is
assumed to have a logistic distribution.
The specification is written succinctly as:
Un = β ¨ sn + εn

Yn =

{
1, if Un ą 0
0, if Un ď 0

(ε „ logistic, normal, etc.)

Written slightly differently:
Un = β ¨ sn ´ en

Yn =

{
1, if Un ą 0
0, if Un ď 0

(e „ logistic, normal, etc.)

Here we have made the substitution en = ´ε . This changes a random variable
into a slightly different one, defined over a negated domain. As it happens, the
error distributions we usually consider (e.g. logistic distribution, normal
distribution, Student’s t-distribution, etc.) are symmetric about 0, and hence
the distribution over en is identical to the distribution over εn
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Extra

Denote the cumulative distribution function (CDF) of e as Fe, and the quantile
function (inverse CDF) of e as F´1

e . Note that

Pr(Yn = 1) = Pr(Un ą 0) (1)

= Pr(β ¨ sn ´ en ą 0) (2)

= Pr(´en ą ´β ¨ sn) (3)

= Pr(en ď β ¨ sn) (4)

= Fe(β ¨ sn) (5)

Since Yn is a Bernoulli trial, where E[Yn] = Pr(Yn = 1), we have
E[Yn] = Fe(β ¨ sn), or, equivalently, F´1

e (E[Yn]) = β ¨ sn.
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Extra

Note that this is exactly equivalent to the binomial regression model expressed
in the formalism of the generalized linear model.

If en „ N(0, 1), i.e. distributed as a standard normal distribution, then
Φ´1(E[Yn]) = β ¨ sn, which is exactly a probit model.

If en „ Logistic(0, 1), i.e. distributed as a standard logistic distribution with
mean 0 and scale parameter 1, then the corresponding quantile function is the
logit function, and logit(E[Yn]) = β ¨ sn, which is exactly a logit model.

Note: logit(p) = log
(

p
1´p

)
= log(p)´ log(1´ p) = ´ log

(
1
p ´ 1

)
.
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Extra

The probability density function (pdf) of the logistic distribution is given by:

f (x; µ, s) =
e´

x´µ
s

s
(
1 + e´

x´µ
s

)2 =
1

s
(
e

x´µ
2s + e´

x´µ
2s

)2 =
1
4s

sech2
( x ´ µ

2s

)
(6)

The logistic distribution receives its name from its cumulative distribution
function (cdf), which is an instance of the family of logistic functions. The
cumulative distribution function of the logistic distribution is also a scaled
version of the hyperbolic tangent:

F(x; µ, s) =
1

1 + e´
x´µ
s

=
1
2
+

1
2

tanh
( x ´ µ

2s

)
(7)

In this equation, x is the random variable, µ is the mean, and s is a scale
parameter proportional to the standard deviation (σ2 = π2s2

3 ). The inverse
cumulative distribution function (quantile function) of the logistic distribution
is a generalization of the logit function. Its derivative is called the quantile
density function. They are defined as follows:

Q(p; µ, s) = µ + s ln
(

p
1´p

)
; Q1(p; s) = s

p(1´p)
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Extra

In information theory, Kraft’s inequality establishes that any directly
decodable coding scheme for coding a message to identify one value xi out of
a set of possibilities X can be seen as representing an implicit probability
distribution q(xi) = 2´li over X , where li is the length of the code for xi in
bits. Therefore, cross entropy can be interpreted as the expected
message-length per datum when a wrong distribution Q is assumed while the
data actually follows a distribution P. That is why the expectation is taken
over the probability distribution P and not Q.

H(p, q) = Ep[li] = Ep

[
log 1

q(xi )

]
H(p, q) =

∑
xi p(xi) log 1

q(xi )

H(p, q) = ´
∑

x p(x) log q(x).

Abhilash Mathews PPPL GSS August 14, 2018 11 / 13



Extra

In L1 regularization, some weights approach 0Ñ sparser solutions compared
to L2 which is a quadratic regularizer (below):
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Extra

∑
i(yi ´ ŷi)

2 is indeed convex in ŷi. But if ŷi = f (xi; θ) it may not be convex
in θ, which is the situation with most non-linear models, and we actually care
about convexity in θ because that’s what we’re optimizing the cost function
over. Consider a network with 1 hidden layer of N units and a linear output
layer: our cost function is

g(α,W) =
∑

i (yi ´ αiσ(W xi))2 ,

where xi P Rp and W P RNˆp (and I’m omitting bias terms for simplicity).
This is not necessarily convex when viewed as a function of (α,W) (depending
on σ: if a linear activation function is used then this still can be convex). And
the deeper our network gets, the less convex things are.
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