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Microwave Diagnostics for Plasmas

Microwaves:
Electromagnetic radiation
frequency: 0.3 - 300 GHz
wavelength: 1 m -1 mm

" Diagnostics:
Passive: listen to waves
coming from the plasma

Active: probing plasmas

with microwaves
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Listening to the oldest plasma signal in the universe:
A noise problem in a microwave antenna

* Arno Penzias and
Robert W. Wilson
found unexplained
noise signal in their
microwave antenna

* Robert Dicke, Jim
Peebles, Peter Roll,
and David Wilkinson
recognized this
signal as coming
from the early
universe

* This "noise" is
now know as:
Cosmic
Microwave
Background
(CMB) radiation
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Listening to the oldest plasma signal in the universe:
How the cosmic microwave background is formed

ENERGY PER UNIT VOLUME
PER UNIT WAVELENGTH RANGE: 3°K
(electron volts per cubic centimeter per centimeter)

* After its formation, the early universe was a hot
and rapidly expanding plasma consisting of:
photons, electrons, and protons
In thermal equilibrium

* About 380000 years after the Big Bang the
temperature dropped to ~3000 K when
protons and electrons combined to hydrogen

* The photons could no longer interact with the
electrons and therefore, the thermal equilibrium
between matter and photons was lost ant the
universe became transperant for fotons

* Since the time that the photons left thermal
equilibrium the universe has expanded
~1100 times and the photon temperature
has dropped to: 3000/1100=2.7 K
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Listening to the oldest plasma signal in the universe:
Detector improvements lead to better CMB maps

* Small variations in Penzias & Wilson
the cosmic microwave
background temperature
reveal density variations
In the primodial plasma

* These density variations
became the seeds for
galaxies
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Listening to the oldest plasma signal in the universe:
The CMB map guides understanding of the universe

 After subtracting the radiation
from the Milky way the data is
used for testing cosmological
models
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Best-fit cosmological parameters from WMAP nine-year results!'?]
‘ Symbol | Best fit (WMAP only) ‘ Best fit (WMAP + eCMB + BAO + Hp)

Parameter

10 100 500 1000
Multipole moment 1
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Age of the universe (Ga) ot 13.74 £0.11 \ 13.772 £0.059
Hubble's constant ( kr”/l\,,pc.S ) Hy ‘ 70.0+22 69.32 £0.80
Baryon density Q | 00463 £0.0024 0.046 28 £0.000 93
Physical baryon density k2 ‘ 0.022 64 +0.000 50 0.022 23 £0.000 33
Cold dark matter density Q. 0233:0023 . oza02 o
Physical cold dark matter density Qchz ‘ 0.1138 +£0.0045 0.1153 £0.0019
Dark energy density Qp ‘ 0.721 £0.025 0.7135 jggggg
Density fluctuations at 8h~" Mpc o8 ‘ 0.821 £0.023 0.820 901
Scalar spectral index Ng ‘ 0.972 £0.013 0.9608 £0.0080
Reionization optical depth T ‘ 0.089 £0.014 0.081 £0.012
Curvature 1= | —opar e ~0i0627 S et
Tensor-to-scalar ratio (ko = 0.002 Mpc™) | r <038(95%CL) <0.13 (95% CL)
Running scalar spectral index | dn, /dlnk ~ -0019£0025 -0.023 £0.011

[14] Bennett, C. L.; et al. (2013), Astrophysical Journal Supplement, 208 20




Temperature measurements of magnitized electrons
electron cyclotron emission

* Charged particles in a magnetic field follow Y
spiraling orbits due to the Lorents Force:

F=qvxB

* Accelerating electrons emit radiation:

Electron Cyclotron Emission or ECE

* solution of Lorentz equation:

dR -9 dR
dtZz mdt XB
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For electrons: . =28 B GHz (B in Tesla)
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Temperature measurements of magnitized electrons
electron cyclotron emission in a tokamak

31 e The magnetic field varies with the major radius:
R,B,
R

B =

B [Tesla]

|
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Temperature measurements of magnitized electrons
electron cyclotron emission in a tokamak

31 e The magnetic field varies with the major radius:

) B= R
K R
o * Therefore, ECE resonances form vertical layers:
w =4B
c m

0.0 meter 1.0
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Temperature measurements of magnitized electrons
electron cyclotron emission in a tokamak

31« The magnetic field varies with the major radius:

T B= R
ks R
0 * Therefore, ECE resonances form vertical layers:
w =IB
cC m
* And local electron cyclotron emission can be measured
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Temperature measurements of magnitized electrons
electron cyclotron emission in a tokamak

31 e The electron temperature is constant on
magnetic flux surfaces

B [Tesla]

* When the plasma is dense enough it acts as
a Black Body in thermal equilibrium

* Kirchhoff's law of thermal radiation:
Emitted radiation is equal to absorbed radiation

* Therefore, the measured ECE radiation gives
the local electron temperature:

W,

Rayleigh-Jeans

0.0 meter 1.0
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Temperature measurements of magnitized electrons
electron cyclotron emission in a tokamak
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* Measurement of ECE radiation on the plasma
mid-plane at different freqgiencies gives the
00 meter 1o equilibrium electron temperature profile
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Temperature measurements of magnitized electrons
Taking images of temperature fluctuations

0.1
_ * The electron temperature can deviate locally
S, from the average temperature due to:

S, - distortions of the flux surfaces
|_

- plasma waves
-0.1 - turbulence

\ \ |
0.0 meter 1.0
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Temperature measurements of magnitized electrons
Taking images of temperature fluctuations

from the average temperature due to:
- distortions of the flux surfaces
- plasma waves
1 - turbulence

T /T [%]
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i * The electron temperature can deviate locally

0
-0

* Pictures of electron
temperature variations
IS a very powerful to

\ ‘ | | study plasmas
0.0 meter 1.0
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Temperature measurements of magnitized electrons
Taking images of temperature fluctuations

0.1 * An array of antennas with receivers
can be used to image a vertical plane
S, (constant w )
|: Cc
R
* A lens is used to image a part of the
-0.1 plasma on an array of antennas
U > : :
@.!g > Typical resolution:
o . — :
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Temperature measurements of magnitized electrons
ECE images help to direct theory development
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* |deal MHD theory predicts that

the radial wave front of Alfvén
waves are constant
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Temperature measurements of magnitized electrons
ECE images help to direct theory development

0.3
0.2 r‘i
Y.
— 0.1 (QA""‘
E - A
5 000 '2D .
5 ': - I
CI>)-0.1_— ‘o‘\ ""
: \""‘ y
-0.2F »E Yy
-0.3F _
b o Ny oy oy e by e by W A A A
1.6 1.8 2.0 2.2

majbr radius [rﬁ]

* |deal MHD theory predicts that
the radial wave front of Alfvén
waves are constant

* ECE images show that the wave

: 1.95 2.05
fronts are radially curved R [m]
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Temperature measurements of magnitized electrons
ECE images help to direct theory development
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* |deal MHD theory predicts that
the radial wave front of Alfvén
waves are constant

e \Wave front curvature indicates
effects beyond ideal MHD

* Ad-hoc radial phase variation

* ECE images show that the wave indicates effects on energy

fronts are radially curved 1'95R [m]2'05 transport and magnetic fields
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Probing plasmas with microwave beams
Electromagnetic waves in plasmas

* From Maxwell's equations we can derive a wave equation:
X (x E+O (U o e p g B=0

* The plasma response to the waves is given by current density:
j=gnv=0lE

* Because electrons are much more mobile than ions we can consider the movement of
the electrons to the plasma response to the waves and evaluate the dielectric tensor:

a—(1+ )

* Using the Lorentz equation we can derive the Appleton-Hartree equation which gives
the dielectric tensor in terms of the plasma and cyclotron frequencies:
_\[Ne€? _eB

pe EoMg wce - m_e

w
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Probing plasmas with microwave beams
Electromagnetic waves in plasmas

* The wave equation in Fourier space reads:
2
k x (k xE )z EE=0

e and the dielectric tensor:

£(x) = (1 + g 9()

determines the properties of the wave:

€ > 0 normal wave
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Probing plasmas with microwave beams
Interferometry for line-integrated electron densities

* The phase difference between
the plasma path and the
reference path is proportional beam splitter plasma

to the line averaged density . \\ mirror
input

* phase in plasma path:

(bpls:J\@%) dl

beam splitter

. detector
* phase in reference path: : >
mirror reference path
— | W
¢ref— [ T d| detector
* The phase difference gives the line integrated electron density: 5
Wpe
e=1-—35
= W - ~_ W w32
Ad J WO(E - 1)dl =, O Jnedl
crit 2 2
02 = Ne€ n = coMe®
Condition: Wpe << W pe  EyMg crit a2
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Probing plasmas with microwave beams
Electromagnetic waves in plasmas

150

* The wave equation in Fourier space reads:
2
k x (k xE )z EE=0

* and the dielectric tensor: _ — 100}
I
20) = (1+ 5, 06) &
determines the properties of the wave: =l
£ 50
€ > 0 normal wave
€ - 0O resonance

1.00

OlL...

1.25 1.50 1.75 2.00 2.25 2.50

major radius [m]
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Probing plasmas with microwave beams
Resonances are great for plasma heating

87

* Microwave power is adsorbed at resonances

* This is not useful for diagnostic puroposes

0.0 meter 1.0
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Probing plasmas with microwave beams
Resonances are great for plasma heating

87
* Microwave power is adsorbed at resonances

* This is not useful for diagnostic puroposes

* It is great for heating and driving current
locally in fusion plasmas

meter
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Probing plasmas with microwave beams
Electromagnetic waves in plasmas

150
* The wave equation in Fourier space reads:

kK x (K xE) -2 eE=0

* and the dielectric tensor: — 100}
_ i 5
e) = (L+pg o) &
determines the properties of the wave: %

a
(@)
T T T

o resonance

> 0 normal wave
= 0 cut-off

€
€
€

1.00 1.25 1.50 1.75 2.00 2.25 2.50

0

major radius [m]

2
_ off £ = Wb
O-mode cut-off: € =1
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Probing plasmas with microwave beams
Electromagnetic waves in plasmas

150
* The wave equation in Fourier space reads:

kK x (K xE) -2 eE=0

e and the dielectric tensor:

[EEY

o

o
I

£(x) = (1 + g 9()

determines the properties of the wave:

frequency [GHZ]

a
(@)
T T T

> 0 normal wave

e
e (0/0) resonance
€

= 0 cut-off _
oL L7 0w v v v b s e e N
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2 major radius [m]
e =1 _ Whe
O-mode cut-off: € =1 7
eB N, €2
2 = —— =\[ ==
Whe W — We wce M. wpe EoMe

X-mode cut-off: €=1 —
W wW- o@e - @)
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Probing plasmas with microwave beams
Electromagnetic waves in plasmas

150
* The wave equation in Fourier space reads:
2
k x (k xE )z EE=0
* and the dielectric tensor: — 100} i
_ i 5
£) = (1 + g 0(x) &
determines the properties of the wave: % _
= 50} .
€ > 0 normal wave -
E > resonance
€ = 0 cutoff _
€ < 0 evanescent wave 0] P o Y Y S P
1.00 1.25 1.50 1.75 2.00 2.25 2.50
2 major radius [m]
e =1 — We
O-mode cut-off: € =1 7
eB N, €2
2 T = €
Whe W — We wce M. wpe EoMe

X-mode cut-off: €=1 —
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Local electron density measurements
Waves are reflected from cut-off layers

50 O-mode permitivit
propagating antenna
: —\ AW
T
O,
Pe
1.0
£ 25 .
= <
@ 0.0
van N 2 o
evanescent SR Y - 3
I § W’ pe EoMe -1.0
0
1.0 1.5 2.0 2.5
major radius [m]
* Cut-off layers can be probed from * The cut-off location in the plasma is obtained
outside the plasma from measuring the wave’s round trip time
* The wave frequency determines the * A great diagnostic to obtain density profiles

reflection point in the plasma
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Local electron density measurements
Measurement of time resolved density profiles

PU'SG No: 26087 __JGez 7349

* By probing the plasma with a range A

of microwave frequencies e
density profiles can bl
be measured
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Electron density
)

50 375  4.00

* Electron density profile
measurements are
crucial to understand
the behavior of
plasmas in tokamaks

electron
density

\ |
0.0 meter 1.0
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Local electron density measurements
Fluctuations have distorting effects on reflections

* Density fluctuations affect the reflected
signal when both the wave vector:

ksignal - kin + kturbulence

and the the frequency:
wsignal - (-ﬂ)l + (fh}bulence

match
100.000 — T~ T T T T T T
: specular !
10.000L reflection i
'S 1.000p .
&,
5
3
S 0.100f E
0.010k turbulc_ant ]
fluctuations
perfect reflection distorted reflection - |
no turbulence due to turbulence 400 -200 0 200 400

frequency [kHz]
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Local electron density measurements
Fluctuations carry information on plasma turbulence

* Plasma turbulence creates random density fluctuations propagating in time and space

that appears as "noise" in the signals of reflectometers

* Correlation methods are used to extract statistical
properties of the plasma turbulence that can be
compared to predictions from theory

Vv

J,\/\WVW\/\/\/\/\/\D_TIransmitter/Receiver 1
/\/v\/\/\/vv\/\/D_Transmitter/Receiver 2

normalized cross correlation

'reflecting layer separation'

= data
— 1-D
¢ 2-D
n/n=5.710731
A, =0.40 cm ]

= data

— 1-D

¢ 2D
n/n=7.010"°]
A, =0.25cm _

0.0 2.0 4.0
reflecting layer separation [cm]
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Microwave Diagnostics for Plasmas
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Microwave diagnostics:
excellent electron probes

Passive:
temperatures profiles
temperature fluctuations

= Active:
density profiles
density fluctuations

Not covered:
microwave techniques
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