Microwave Diagnostics for Plasmas Gerrit J. Kramer, PPPL

Microwave diagnostics, PPPL GSS, Aug 14 2018, Princeton NJ, G.J. Kramer

Microwave Diagnostics for Plasmas

Microwaves:

Electromagnetic radiation frequency: 0.3 - 300 GHz wavelength: 1 m - 1 mm

Diagnostics:

Passive: listen to waves coming from the plasma Active: probing plasmas with microwaves TIME

POWER

1

2

3

4

5

6

7

8

9

0

AUTO

COOK

0

AUTO

DEFROS

CONTROL

NERMET

HIOT

HOTTER

HOTTES

STOP CLEAR

0100

SERVE

TIME

TIMER

RECIPE

Listening to the oldest plasma signal in the universe: A noise problem in a microwave antenna

- Arno Penzias and Robert W. Wilson found unexplained noise signal in their microwave antenna
- Robert Dicke, Jim Peebles, Peter Roll, and David Wilkinson recognized this signal as coming from the early universe
- This "noise" is now know as: Cosmic Microwave Background (CMB) radiation

Listening to the oldest plasma signal in the universe: How the cosmic microwave background is formed

- After its formation, the early universe was a hot and rapidly expanding plasma consisting of: photons, electrons, and protons in thermal equilibrium
- About 380000 years after the Big Bang the temperature dropped to ~3000 K when protons and electrons combined to hydrogen
- The photons could no longer interact with the electrons and therefore, the thermal equilibrium between matter and photons was lost ant the universe became transperant for fotons
- Since the time that the photons left thermal equilibrium the universe has expanded ~1100 times and the photon temperature has dropped to: 3000 / 1100 = 2.7 K

From: S. Weinberg, The first three minutes

Listening to the oldest plasma signal in the universe: Detector improvements lead to better CMB maps

- Small variations in the cosmic microwave background temperature reveal density variations in the primodial plasma
- These density variations became the seeds for galaxies

Listening to the oldest plasma signal in the universe: The CMB map guides understanding of the universe

 After subtracting the radiation from the Milky way the data is used for testing cosmological models

Parameter	Symbol	Best fit (WMAP only)	Best fit (WMAP + eCMB + BAO + H ₀)
Age of the universe (Ga)	t_0	13.74 ±0.11	13.772 ±0.059
Hubble's constant (^{km} / _{Mpc·s})	H_0	70.0 ±2.2	69.32 ±0.80
Baryon density	Ω_b	0.0463 ±0.0024	0.046 28 ±0.000 93
Physical baryon density	$\Omega_b h^2$	0.022 64 ±0.000 50	0.022 23 ±0.000 33
Cold dark matter density	Ω_c	0.233 ±0.023	0.2402 +0.0088 -0.0087
Physical cold dark matter density	$\Omega_c h^2$	0.1138 ±0.0045	0.1153 ±0.0019
Dark energy density	Ω_{Λ}	0.721 ±0.025	0.7135 +0.0095 -0.0096
Density fluctuations at 8h ⁻¹ Mpc	σ_8	0.821 ±0.023	0.820 ^{+0.013} -0.014
Scalar spectral index	n_s	0.972 ±0.013	0.9608 ±0.0080
Reionization optical depth	au	0.089 ±0.014	0.081 ±0.012
Curvature	$1-\Omega_{\rm tot}$	-0.037 +0.044 -0.042	-0.0027 ^{+0.0039} -0.0038
Tensor-to-scalar ratio ($k_0 = 0.002 \text{ Mpc}^{-1}$)	r	< 0.38 (95% CL)	< 0.13 (95% CL)
Running scalar spectral index	$dn_s/d\ln k$	-0.019 ±0.025	-0.023 ±0.011

[14] Bennett, C. L.; et al. (2013), Astrophysical Journal Supplement, 208 20

• Charged particles in a magnetic field follow spiraling orbits due to the Lorents Force:

 $\mathbf{F} = \mathbf{q} \mathbf{v} \times \mathbf{B}$

- Accelerating electrons emit radiation: Electron Cyclotron Emission or ECE
- solution of Lorentz equation:

 $\frac{d\mathbf{R}}{dt^2} = \frac{q}{m}\frac{d\mathbf{R}}{dt} \times \mathbf{B}$

 $\textbf{B}\!=(0,\!0,\!B)$ and $\textbf{v}\!=(v_{\!\scriptscriptstyle \perp},\!v_{\!\scriptscriptstyle |\!|})$

$$R_{x} = \rho \sin(\omega t) \qquad \rho = \frac{V_{\perp}}{\omega}$$

$$R_{y} = \rho \sin(\omega t)$$

$$R_{z} = V_{\parallel} t \qquad \omega_{c} = \frac{qB}{m}$$

For electrons: $f_c = 28 \text{ B GHz}$ (B in Tesla)

$$\mathsf{B} = \frac{\mathsf{R}_0 \mathsf{B}_0}{\mathsf{R}}$$

• The magnetic field varies with the major radius:

$$\mathsf{B} = \frac{\mathsf{R}_0\mathsf{B}_0}{\mathsf{R}}$$

• Therefore, ECE resonances form vertical layers:

$$\omega_{c} = \frac{qB}{m}$$

Microwave diagnostics, PPPL GSS, Aug 14 2018, Princeton NJ, G.J. Kramer

- The electron temperature is constant on magnetic flux surfaces
 - When the plasma is dense enough it acts as a Black Body in thermal equilibrium
 - Kirchhoff's law of thermal radiation: Emitted radiation is equal to absorbed radiation
 - Therefore, the measured ECE radiation gives the local electron temperature:

$$l^{ece}(\omega) = \frac{\omega^2 T_e}{8\pi^3 c^2}$$

Rayleigh-Jeans

Temperature measurements of magnitized electrons Taking images of temperature fluctuations

- The electron temperature can deviate locally from the average temperature due to:
 - distortions of the flux surfaces
 - plasma waves
 - turbulence

Temperature measurements of magnitized electrons Taking images of temperature fluctuations

Temperature measurements of magnitized electrons Taking images of temperature fluctuations

Temperature measurements of magnitized electrons ECE images help to direct theory development

 Ideal MHD theory predicts that the radial wave front of Alfvén waves are constant

Temperature measurements of magnitized electrons ECE images help to direct theory development

- Ideal MHD theory predicts that the radial wave front of Alfvén waves are constant
- ECE images show that the wave fronts are radially curved

Temperature measurements of magnitized electrons ECE images help to direct theory development

• From Maxwell's equations we can derive a wave equation:

$$\nabla \times (\nabla \times \mathbf{E}) + \partial_t (\mu_0 \, \mathbf{j} + \boldsymbol{\epsilon}_0 \, \mu_0 \, \partial_t \mathbf{E}) = 0$$

• The plasma response to the waves is given by current density:

 $\mathbf{j} = \mathbf{q} \mathbf{n} \mathbf{v} = \mathbf{\sigma} \cdot \mathbf{E}$

• Because electrons are much more mobile than ions we can consider the movement of the electrons to the plasma response to the waves and evaluate the dielectric tensor:

$$\varepsilon = (1 + \frac{i}{\omega \varepsilon_0} \sigma)$$

• Using the Lorentz equation we can derive the Appleton-Hartree equation which gives the dielectric tensor in terms of the plasma and cyclotron frequencies:

$$\omega_{\rm pe} = \sqrt{\frac{n_{\rm e} \, e^2}{\epsilon_0 \, m_{\rm e}}} \qquad \qquad \omega_{\rm ce} = \frac{e B}{m_{\rm e}}$$

• The wave equation in Fourier space reads:

$$\mathbf{k} \times (\mathbf{k} \times \mathbf{E}) - \frac{\omega^2}{\mathbf{C}^2} \varepsilon \mathbf{E} = 0$$

• and the dielectric tensor:

$$\varepsilon(\mathbf{x}) = (1 + \frac{i}{\omega \varepsilon_0} \sigma(\mathbf{x}))$$

determines the properties of the wave:

$$\epsilon > 0$$
 normal wave

Probing plasmas with microwave beams Interferometry for line-integrated electron densities

- The phase difference between the plasma path and the reference path is proportional to the line averaged density
- phase in plasma path:

$$\phi_{\text{pls}} = \int \!\! \sqrt{\epsilon} \, \frac{\omega}{c} \, dI$$

• phase in reference path:

$$\phi_{ref} = \int \frac{\omega}{C} dI$$

• The phase difference gives the line integrated electron density:

$$\Delta \phi = \int \frac{\omega}{C} (\sqrt{\epsilon} - 1) dI \approx \frac{\omega}{2Cn_{crit}} \int n_e dI \qquad \qquad \epsilon = 1 - \frac{\omega_{pe}}{\omega^2}$$

Condition: $\omega_{pe} \ll \omega \qquad \qquad \omega_{pe}^2 = \frac{n_e e^2}{\epsilon_0 m_e} \qquad n_{crit}^2 = \frac{\epsilon_0 m_e \omega^2}{e^2}$

Microwave diagnostics, PPPL GSS, Aug 14 2018, Princeton NJ, G.J. Kramer

• The wave equation in Fourier space reads:

$$\mathbf{k} \times (\mathbf{k} \times \mathbf{E}) - \frac{\omega^2}{\mathbf{C}^2} \varepsilon \mathbf{E} = 0$$

• and the dielectric tensor:

$$\varepsilon(\mathbf{x}) = (1 + \frac{I}{\omega \varepsilon_0} \sigma(\mathbf{x}))$$

determines the properties of the wave:

 $\epsilon > 0$ normal wave $\epsilon \rightarrow \infty$ resonance

Probing plasmas with microwave beams Resonances are great for plasma heating

- Microwave power is adsorbed at resonances
- This is not useful for diagnostic puroposes

Probing plasmas with microwave beams Resonances are great for plasma heating

• The wave equation in Fourier space reads:

$$\mathbf{k} \times (\mathbf{k} \times \mathbf{E}) - \frac{\omega^2}{\mathbf{C}^2} \varepsilon \mathbf{E} = 0$$

• and the dielectric tensor:

$$\varepsilon(\mathbf{x}) = (1 + \frac{i}{\omega \varepsilon_0} \sigma(\mathbf{x}))$$

determines the properties of the wave:

 $\begin{array}{ll} \epsilon > 0 & \text{normal wave} \\ \epsilon \to \infty & \text{resonance} \\ \epsilon = 0 & \text{cut-off} \end{array}$

O-mode cut-off:
$$\varepsilon = 1 - \frac{\omega_{pe}^2}{\omega^2}$$

• The wave equation in Fourier space reads:

$$\mathbf{k} \times (\mathbf{k} \times \mathbf{E}) - \frac{\omega^2}{\mathbf{C}^2} \varepsilon \mathbf{E} = 0$$

• and the dielectric tensor:

$$\varepsilon(\mathbf{x}) = (1 + \frac{I}{\omega \varepsilon_0} \sigma(\mathbf{x}))$$

determines the properties of the wave:

 $\epsilon > 0$ normal wave $\epsilon \rightarrow \infty$ resonance $\epsilon = 0$ cut-off

O-mode cut-off:
$$\varepsilon = 1 - \frac{\omega_{pe}^2}{\omega^2}$$

X-mode cut-off:
$$\varepsilon = 1 - \frac{\omega_{pe}^2}{\omega^2} \frac{\omega - \omega_{pe}^2}{\omega - \omega_{pe}^2 - \omega_{ce}^2}$$

• The wave equation in Fourier space reads:

$$\mathbf{k} \times (\mathbf{k} \times \mathbf{E}) - \frac{\omega^2}{\mathbf{C}^2} \varepsilon \mathbf{E} = 0$$

• and the dielectric tensor:

$$\varepsilon(\mathbf{x}) = (1 + \frac{i}{\omega \varepsilon_0} \sigma(\mathbf{x}))$$

determines the properties of the wave:

O-mode cut-off:
$$\varepsilon = 1 - \frac{\omega_{pe}^2}{\omega^2}$$

X-mode cut-off:
$$\varepsilon = 1 - \frac{\omega_{pe}^2}{\omega^2} \frac{\omega - \omega_{pe}^2}{\omega - \omega_{pe}^2 - \omega_{ce}^2}$$

Local electron density measurements Waves are reflected from cut-off layers

- Cut-off layers can be probed from outside the plasma
- The wave frequency determines the reflection point in the plasma
- The cut-off location in the plasma is obtained from measuring the wave's round trip time
- A great diagnostic to obtain density profiles

Local electron density measurements Measurement of time resolved density profiles

Local electron density measurements Fluctuations have distorting effects on reflections

• Density fluctuations affect the reflected signal when both the wave vector:

$$\mathbf{K}_{\text{signal}} = \mathbf{k}_{\text{in}} + \mathbf{k}_{\text{turbulence}}$$

and the the frequency:

$$\omega_{\text{signal}} = \omega_{\text{in}} + \omega_{\text{turbulence}}$$

match

perfect reflection no turbulence

distorted reflection due to turbulence

Local electron density measurements Fluctuations carry information on plasma turbulence

- Plasma turbulence creates random density fluctuations propagating in time and space that appears as "noise" in the signals of reflectometers
- Correlation methods are used to extract statistical properties of the plasma turbulence that can be compared to predictions from theory

Microwave Diagnostics for Plasmas

Microwave diagnostics: excellent electron probes

Passive:

temperatures profiles temperature fluctuations

Active: density profiles density fluctuations

Not covered: microwave techniques

Microwave diagnostics, PPPL GSS, Aug 14 2018, Princeton NJ, G.J. Kramer

TIME

POWER

1

2

3

4

5

6

7

8

9

0

AUTO

COOK

0

AUTO

DEFRO

EMPERATURE

NERMET

HIOT

HOTTER

HOTTES

STOP CLEAR

0100

SERVE

TIME

TIMER

RECIPE