Low-beta electromagnetic plasma turbulence driven by electron-temperature gradient

T. G. Adkins^{1,2} and A. A. Schekochihin^{1,2}

¹Rudolf Peierls Centre For Theoretical Physics Oxford University

> ²Merton College Oxford University

PPPL Graduate Summer School 2020

Table of Contents

1. Motivation

- 2. Theoretical Background
- 3. Waves and Instabilities

- 4. Free energy and turbulence
- 5. Summary and future work

Table of Contents

1. Motivation

2. Theoretical Background

3. Waves and Instabilities

4. Free energy and turbulence

5. Summary and future work

Motivation

- Understanding (turbulent) heat transport in magnetically confined plasmas is crucial to the design of successful tokamak experiments
- Therefore, we need to determine the turbulent state of the plasma at saturation
- ▶ We shall focus on turbulence driven by the electron-temperature gradient (ETG) instability
- Most theory is done electostatically; that is, under the assumption that magnetic field lines are not frozen into the electron velocity, and so electrons are free to stream across said field lines without deforming them
- Developing picture for the turbulent state in the electromagnetic regime is a natural and desirable extension of the typical ETG picture

Table of Contents

1. Motivation

- 2. Theoretical Background
- 3. Waves and Instabilities

- 4. Free energy and turbulence
- 5. Summary and future work

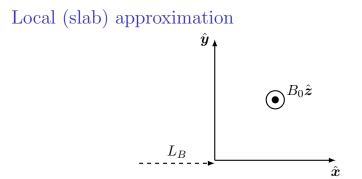


Figure 1: A representation of the magnetic geometry adopted. The domain is located a distance L_B from the axis, and \hat{x} and \hat{y} are the 'radial' and 'poloidal' directions respectively. The equilibrium magnetic field B_0 is orientated along \hat{z} .

$$L_B^{-1} = -\frac{1}{B_0} \frac{\mathrm{d}B_0}{\mathrm{d}x}, \quad L_{n_s}^{-1} = -\frac{1}{n_s} \frac{\mathrm{d}n_s}{\mathrm{d}x}, \quad L_{T_s}^{-1} = -\frac{1}{T_s} \frac{\mathrm{d}T_s}{\mathrm{d}x}$$

Low-beta ordering

For characteristic frequencies ω and wavenumbers k_{\parallel} and k_{\perp} parallel and perpendicular to the total magnetic field \boldsymbol{B} , we adopt the ordering

$$\omega \sim k_{\perp} v_E \sim \omega_{ds} \sim k_{\parallel} v_{\text{the}} \sim \omega_{*s} \sim \omega_{\text{KAW}} \sim \nu_{ee} \sim \nu_{ei}.$$

In particular, such an ordering implies both that the electron beta is small

$$\beta_e \sim \frac{Zm_e}{m_i} \ll 1, \quad \beta_e = \frac{8\pi n_e T_e}{B_0^2},$$

and that the perturbations are small-amplitude and highly anisotropic:

$$\frac{k_{\parallel}}{k_{\perp}} \sim \epsilon \sqrt{\beta_e}, \quad \epsilon = \frac{d_e}{L_{T_s}} \ll 1, \quad d_e = \frac{c}{\omega_{\rm pe}}.$$

In general, our system is captured by the fields ϕ , A_{\parallel} , δf_e , (g_i) .

Gyrokinetics

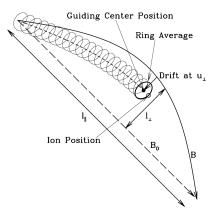


Figure 2: Within magnetic confinement fusion devices, particles perform gyro-motion around the local magnetic field. Gyrokinetics averages over this fast timescale, approximating the particles as rings of charge (diagram from Howes et al. (2006)).

Table of Contents

1. Motivation

2. Theoretical Background

3. Waves and Instabilities

4. Free energy and turbulence

5. Summary and future work

We consider the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{k_{\parallel} v_{\mathrm{th}e}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \ll 1 \ll k_{\perp} d_e,$$

under which our equations reduce to:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\bar{\tau}^{-1}\varphi &= \nabla_{\parallel}u_{\parallel e} - 2\frac{\rho_{e}v_{\mathrm{th}e}}{2L_{B}}\frac{\partial}{\partial y}\frac{\delta T_{e}}{T_{e}},\\ \frac{\mathrm{d}u_{\parallel e}}{\mathrm{d}t} &= -\frac{v_{\mathrm{th}e}^{2}}{2}\nabla_{\parallel}\frac{\delta T_{e}}{T_{e}}, \quad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\delta T_{e}}{T_{e}} = -\frac{\rho_{e}v_{\mathrm{th}e}}{2L_{T_{e}}}\frac{\partial\varphi}{\partial y}, \end{aligned}$$

We consider the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{k_{\parallel} v_{\mathrm{th}e}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \ll 1 \ll k_{\perp} d_e,$$

under which our equations reduce to:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\bar{\tau}^{-1}\varphi &= \nabla_{\parallel}u_{\parallel e} - 2\frac{\rho_e v_{\mathrm{the}}}{2L_B}\frac{\partial}{\partial y}\frac{\delta T_e}{T_e},\\ \frac{\mathrm{d}u_{\parallel e}}{\mathrm{d}t} &= -\frac{v_{\mathrm{the}}^2}{2}\nabla_{\parallel}\frac{\delta T_e}{T_e}, \quad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\delta T_e}{T_e} = -\frac{\rho_e v_{\mathrm{the}}}{2L_{T_e}}\frac{\partial\varphi}{\partial y}, \end{split}$$

where

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} &= \frac{\partial}{\partial t} + \boldsymbol{v}_E \cdot \nabla_{\perp} = \frac{\partial}{\partial t} + \frac{1}{2} \rho_e v_{\mathrm{th}e} \{\varphi, \ldots\},\\ \nabla_{\parallel} &= \boldsymbol{b} \cdot \nabla = \frac{\partial}{\partial z} + \frac{\delta \boldsymbol{B}_{\perp}}{B_0} \cdot \nabla_{\perp} = \frac{\partial}{\partial z} - \rho_e \{\mathcal{A}, \ldots\}, \end{split}$$

and we have defined the normalised variables $\varphi = e\phi/T_e$ and $\mathcal{A} = A_{\parallel}/\rho_e B_0$.

We consider the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{k_{\parallel} v_{\text{the}}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \ll 1 \ll k_{\perp} d_e,$$

under which our equations reduce to:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \bar{\tau}^{-1} \varphi &= \nabla_{\parallel} u_{\parallel e} - 2 \frac{\rho_e v_{\mathrm{the}}}{2L_B} \frac{\partial}{\partial y} \frac{\delta T_e}{T_e}, \\ \frac{\mathrm{d}u_{\parallel e}}{\mathrm{d}t} &= -\frac{v_{\mathrm{the}}^2}{2} \nabla_{\parallel} \frac{\delta T_e}{T_e}, \quad \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta T_e}{T_e} = -\frac{\rho_e v_{\mathrm{the}}}{2L_{T_e}} \frac{\partial \varphi}{\partial y}, \end{split}$$

In the absence of magnetic drifts $(L_B^{-1} \to 0)$ we recover the familiar slab ETG result:

$$\omega = \operatorname{sgn}(k_y) \left(-1, \frac{1}{2} \pm i \frac{\sqrt{3}}{2} \right) \left(\frac{k_{\parallel}^2 v_{\operatorname{the}}^2 |\omega_{\ast e}| \bar{\tau}}{2} \right)^{1/3}$$

.

We consider the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{k_{\parallel} v_{\mathrm{th}e}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \ll 1 \ll k_{\perp} d_e,$$

under which our equations reduce to:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\bar{\tau}^{-1}\varphi &= \nabla_{\parallel}u_{\parallel e} - 2\frac{\rho_e v_{\mathrm{the}}}{2L_B}\frac{\partial}{\partial y}\frac{\delta T_e}{T_e},\\ \frac{\mathrm{d}u_{\parallel e}}{\mathrm{d}t} &= -\frac{v_{\mathrm{the}}^2}{2}\nabla_{\parallel}\frac{\delta T_e}{T_e}, \quad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\delta T_e}{T_e} = -\frac{\rho_e v_{\mathrm{the}}}{2L_{T_e}}\frac{\partial\varphi}{\partial y}, \end{split}$$

In the 2-D limit $(k_{\parallel} \rightarrow 0)$, we obtain the familiar curvature-ETG mode

$$\omega^2 = -\omega_{*e}\omega_{de}\bar{\tau} = -\frac{(k_y\rho_e v_{\mathrm{th}e})^2\bar{\tau}}{L_{T_e}L_B}$$

We consider the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{k_{\parallel} v_{\mathrm{th}e}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \ll 1 \ll k_{\perp} d_e,$$

under which our equations reduce to:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\bar{\tau}^{-1}\varphi &= \nabla_{\parallel}u_{\parallel e} - 2\frac{\rho_{e}v_{\mathrm{th}e}}{2L_{B}}\frac{\partial}{\partial y}\frac{\delta T_{e}}{T_{e}},\\ \frac{\mathrm{d}u_{\parallel e}}{\mathrm{d}t} &= -\frac{v_{\mathrm{th}e}^{2}}{2}\nabla_{\parallel}\frac{\delta T_{e}}{T_{e}}, \quad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\delta T_{e}}{T_{e}} = -\frac{\rho_{e}v_{\mathrm{th}e}}{2L_{T_{e}}}\frac{\partial\varphi}{\partial y}, \end{split}$$

The conventional (slab) ETG instability exists as long as $k_{\perp}d_e$ is large, as it requires electrons to flow across field lines. However, since the curvature-ETG mode arises from the interchange of magnetic field lines, it will drive instabilities regardless of the perpendicular scale...

We considering the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \sim k_{\perp} d_e \ll \frac{k_{\parallel} v_{\mathrm{th}e}}{\omega_{*e}} \sim 1,$$

under which our equations reduce to:

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}\bar{\tau}^{-1}\varphi = d_e^2 \nabla_{\parallel} \nabla_{\perp}^2 \mathcal{A} - 2\frac{\rho_e v_{\mathrm{th}e}}{2L_B} \frac{\partial}{\partial y} \frac{\delta T_e}{T_e}, \\ &\nabla_{\parallel} \frac{\delta T_e}{T_e} = \frac{\rho_e}{L_{T_e}} \frac{\partial \mathcal{A}}{\partial y}, \quad \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta T_e}{T_e} = -\frac{\rho_e v_{\mathrm{th}e}}{2L_{T_e}} \frac{\partial \varphi}{\partial y}. \end{split}$$

We considering the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \sim k_{\perp} d_e \ll \frac{k_{\parallel} v_{\rm the}}{\omega_{*e}} \sim 1,$$

under which our equations reduce to:

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}\bar{\tau}^{-1}\varphi = d_e^2 \nabla_{\parallel} \nabla_{\perp}^2 \mathcal{A} - 2\frac{\rho_e v_{\mathrm{th}e}}{2L_B} \frac{\partial}{\partial y} \frac{\delta T_e}{T_e}, \\ &\nabla_{\parallel} \frac{\delta T_e}{T_e} = \frac{\rho_e}{L_{T_e}} \frac{\partial \mathcal{A}}{\partial y}, \quad \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta T_e}{T_e} = -\frac{\rho_e v_{\mathrm{th}e}}{2L_{T_e}} \frac{\partial \varphi}{\partial y} \end{split}$$

Linearising and Fourier transforming, we find the dispersion relation _

$$\omega^2 = k_{\parallel}^2 v_{\text{the}}^2 k_{\perp}^2 d_e^2 \frac{\tau}{2} - \omega_{*e} \omega_{de} \bar{\tau}.$$

We considering the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \sim k_{\perp} d_e \ll \frac{k_{\parallel} v_{\text{the}}}{\omega_{*e}} \sim 1,$$

under which our equations reduce to:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \bar{\tau}^{-1} \varphi &= d_e^2 \nabla_{\parallel} \nabla_{\perp}^2 \mathcal{A} - 2 \frac{\rho_e v_{\mathrm{the}}}{2L_B} \frac{\partial}{\partial y} \frac{\delta T_e}{T_e}, \\ \nabla_{\parallel} \frac{\delta T_e}{T_e} &= \frac{\rho_e}{L_{T_e}} \frac{\partial \mathcal{A}}{\partial y}, \quad \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta T_e}{T_e} = -\frac{\rho_e v_{\mathrm{the}}}{2L_{T_e}} \frac{\partial \varphi}{\partial y} \end{split}$$

These hybrid KAW-curvature-ETG like modes are unstable for certain values of k_{\parallel} :

$$k_{\parallel}^2 \leqslant \frac{\beta_e}{2L_{T_e}R} \left(\frac{k_y}{k_{\perp}}\right)^2.$$

For $k_{\parallel} = 0$, we simply re-obtain the curvature-ETG mode.

.

We considering the subsidiary ordering

$$\frac{\omega_{de}}{\omega_{*e}} \ll \frac{\omega}{\omega_{*e}} \sim k_{\perp} d_e \ll \frac{k_{\parallel} v_{\mathrm{th}e}}{\omega_{*e}} \sim 1,$$

under which our equations reduce to:

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}\bar{\tau}^{-1}\varphi = d_e^2 \nabla_{\parallel} \nabla_{\perp}^2 \mathcal{A} - 2\frac{\rho_e v_{\mathrm{th}e}}{2L_B} \frac{\partial}{\partial y} \frac{\delta T_e}{T_e}, \\ &\nabla_{\parallel} \frac{\delta T_e}{T_e} = \frac{\rho_e}{L_{T_e}} \frac{\partial \mathcal{A}}{\partial y}, \quad \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta T_e}{T_e} = -\frac{\rho_e v_{\mathrm{th}e}}{2L_{T_e}} \frac{\partial \varphi}{\partial y} \end{split}$$

It thus appears that the curvature-ETG instability persists as a source of energy injection above the d_e scale. How does this affect our picture of the turbulent state of our plasma?

Table of Contents

1. Motivation

2. Theoretical Background

3. Waves and Instabilities

4. Free energy and turbulence

5. Summary and future work

Free energy and critical balance

Our system nonlinearly conserves the free energy

$$\frac{W}{n_e T_e} = \int \frac{\mathrm{d}^3 \boldsymbol{r}}{V} \left[\frac{\varphi \bar{\tau}^{-1} \varphi}{2} + |d_e \nabla_\perp \mathcal{A}|^2 + \frac{1}{2} \frac{\delta n_e^2}{n_e^2} + \frac{u_{\parallel e}^2}{v_{\mathrm{the}}^2} + \frac{1}{4} \frac{\delta T_{\parallel e}^2}{T_e^2} + \dots \right],$$

which is injected through equilibrium gradients and dissipated by collisions, leading to cascade of energy from large to small scales.

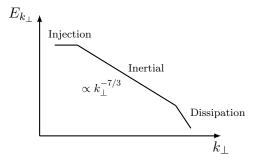


Figure 3: The typical Kolmogorov picture of turbulence.

Free energy and critical balance

Our system nonlinearly conserves the free energy

$$\frac{W}{n_e T_e} = \int \frac{\mathrm{d}^3 \boldsymbol{r}}{V} \left[\frac{\varphi \bar{\tau}^{-1} \varphi}{2} + |d_e \nabla_\perp \mathcal{A}|^2 + \frac{1}{2} \frac{\delta n_e^2}{n_e^2} + \frac{u_{\parallel e}^2}{v_{\mathrm{the}}^2} + \frac{1}{4} \frac{\delta T_{\parallel e}^2}{T_e^2} + \dots \right],$$

which is injected through equilibrium gradients and dissipated by collisions, leading to cascade of energy from large to small scales. Assume:

- Critical balance: that the characteristic time for propagation along the field lines is comparable to the nonlinear advection rate t_{nl}^{-1} at each scale k_{\perp}^{-1} .
- ▶ That the perturbations are roughly isotropic in the perpendicular plane, so $k_x \sim k_y \sim k_{\perp}$.
- ▶ That there is a constant flux of energy in the inertial range:

$$\varepsilon_W \sim \frac{1}{n_e T_e} \frac{\mathrm{d}W}{\mathrm{d}t} \sim \frac{\bar{\tau}^{-1} \varphi^2}{t_{\mathrm{nl}}} = \mathrm{constant}.$$

Turbulent heat fluxes

We have contributions to the turbulent heat flux arising from the conventional ETG instability and the curvature-ETG instability:

$$(Q_{\rm turb})^{\rm ETG} \sim n_e T_e \frac{\rho_e^2 d_e}{L_{T_e}^2} \Omega_e \quad \text{vs.} \quad (Q_{\rm turb})^{\rm cETG} \sim n_e T_e \frac{\rho_e^3 L_{\parallel}}{L_{T_e} L_B^2} \Omega_e.$$

- The transport that results from the curvature-ETG is less 'stiff' than that resulting from the ETG.
- Role of the parallel temperature perturbation is to maintain pressure balance along the perturbed field line, rather than drive parallel electron velocity.
- ▶ This means that the ETG only enters into the dispersion relation through the curvature term.

Table of Contents

- 1. Motivation
- 2. Theoretical Background
- 3. Waves and Instabilities

- 4. Free energy and turbulence
- 5. Summary and future work

Summary and future work

- ▶ We considered the turbulent state of a low-beta, magnetised plasma allowing electromagnetic perturbations and a variation of the equilibrium magnetic field
- In certain analytical limits, it was shown that the system supported two primary instabilities: the conventional electrostatic ETG instability, and KAWs unstable to the curvature-ETG instability.
- ▶ Below the d_e scale, the resultant turbulent heat flux scales as $L_{T_e}^{-2}$, while above the d_e scale it appears less 'stiff', scaling as $L_{T_e}^{-1}$.
- Simulations of a reduced version of the full kinetic system are currently being implemented in order to verify these analytical estimates.

Backup slides (1)

Gyrokinetic set-up:

$$\delta f_s(\boldsymbol{r}, \boldsymbol{v}, t) = -\frac{q_s \phi(\boldsymbol{r}, t)}{T_s} f_{0s}(x, \boldsymbol{v}) + h_s(\boldsymbol{R}_s, v_\perp, v_\parallel, t),$$

$$\begin{aligned} \frac{\partial}{\partial t} \left(h_s - \frac{q_s \langle \chi \rangle_{\boldsymbol{R}_s}}{T_s} f_{0s} \right) + v_{\parallel} \frac{\partial h_s}{\partial z} \\ + (\boldsymbol{v}_{ds} + \langle v_{\chi} \rangle_{\boldsymbol{R}_s}) \cdot \nabla_{\perp} \left(h_s + f_{0s} \right) = C[h_s], \end{aligned}$$

$$oldsymbol{v}_{\chi} = rac{c}{B_0} \hat{oldsymbol{z}} imes
abla_{\perp} \chi, \quad \chi = \phi - rac{v_{\parallel} A_{\parallel}}{c} - rac{oldsymbol{v}_{\perp} \cdot oldsymbol{A}}{c}$$

$$\boldsymbol{v}_{ds} = \frac{\boldsymbol{b}}{\Omega_s} \times \left[v_{\parallel}^2 \boldsymbol{b} \cdot \boldsymbol{\nabla} \boldsymbol{b} + \frac{1}{2} v_{\perp}^2 \boldsymbol{\nabla} \log B \right].$$

Backup slides (2)

Ordering of lengthscales:

$$\begin{split} k_{\perp}\rho_{i} &\sim \sqrt{\frac{\tau}{Z}}, \quad k_{\perp}\rho_{e} \sim \sqrt{\beta_{e}}, \quad k_{\perp}d_{e} \sim 1, \\ k_{\parallel}L_{n_{s}} &\sim k_{\parallel}L_{T_{s}} \sim k_{\parallel}R \sim \sqrt{\beta_{e}}, \quad \frac{k_{\parallel}}{k_{\perp}} \sim \epsilon\sqrt{\beta_{e}}. \end{split}$$

Ordering of timescales:

$$\frac{\omega}{\Omega_e} \sim \epsilon \beta_e, \quad \frac{\omega}{\Omega_i} \sim \epsilon.$$

Ordering of perturbations of density, pressure and electromagnetic fields:

$$\frac{\delta n_e}{n_e} \sim \frac{\delta n_i}{n_i} \sim \frac{\delta p_e}{p_e} \sim \frac{\delta p_i}{p_i} \sim \frac{e\phi}{T_e} \sim \epsilon, \quad \frac{\delta B_\perp}{B_0} \sim \epsilon \sqrt{\beta_e}, \quad \frac{\delta B_\parallel}{B_0} \sim \epsilon \beta_e.$$

Backup slides (3)

Non-adiabatic response of the ions:

$$\begin{split} \left(\frac{\mathrm{d}}{\mathrm{d}t} + \boldsymbol{v}_{di} \cdot \nabla_{\perp}\right) g_i &+ \frac{c}{B_0} \left\{ \langle \phi \rangle_{\boldsymbol{R}_i} - \phi, g_i \right\} + \langle \boldsymbol{v}_E \rangle_{\boldsymbol{R}_i} \cdot \nabla_{\perp} f_{0i} \\ &= C \left[g_i + \frac{q_i \langle \phi \rangle_{\boldsymbol{R}_i}}{T_i} f_{0i} \right], \end{split}$$

where

$$g_i = h_i - \frac{q_i \langle \phi \rangle_{R_i}}{T_i} f_{0i}.$$

Quasineutrality and parallel Ampere's law:

$$rac{\delta n_e}{n_e} = -ar{ au}^{-1} arphi + rac{1}{n_i} \int \mathrm{d}^3 oldsymbol{v} \, \left\langle g_i
ight
angle_{oldsymbol{r}} \,, \quad rac{u_{\parallel e}}{v_{\mathrm{th}e}} = d_e^2
abla_{\perp}^2 \mathcal{A}.$$

where we have defined the normalised variables $\varphi = e\phi/T_e$ and $\mathcal{A} = A_{\parallel}/\rho_e B_0$.

Backup slides (4)

The electrons are drift kinetic, since $k_{\perp}\rho_e \sim \sqrt{\beta_e} \ll 1$, vis.:

$$\left(rac{\mathrm{d}}{\mathrm{d}t} + v_{\parallel}
abla_{\parallel} + oldsymbol{v}_{de} \cdot
abla_{\perp}
ight) \delta f_e = -oldsymbol{v}_{\chi} \cdot
abla_{\perp} f_{0e} - rac{v_{\parallel} e E_{\parallel}}{T_e} + C[\delta f_e].$$

We choose to expand δf_e in Laguerre-Hermite moments $g_{\ell,m}$:

$$g_{\ell,m}(\boldsymbol{r},t) = \frac{1}{n_e} \int \mathrm{d}^3 \boldsymbol{v} \ (-1)^\ell \frac{L_\ell(v_\perp^2/v_{\mathrm{th}e}^2)H_m(v_\parallel/v_{\mathrm{th}e})}{\sqrt{2^m m!}} \ \delta f_e,$$

$$\delta f_e(\boldsymbol{r},v_\parallel,v_\perp^2,t) = \sum_{\ell=0}^\infty \sum_{m=0}^\infty (-1)^\ell \frac{L_\ell(v_\perp^2/v_{\mathrm{th}e}^2)H_m(v_\parallel/v_{\mathrm{th}e})f_{0e}}{\sqrt{2^m m!}} \ g_{\ell,m},$$

where

 $L_{\ell} =$ Laguerre polynomials of order ℓ , $H_m =$ Hermite polynomials of order m. Backup slides (5)

$$L_{\ell}(\mu) = \frac{e^{\mu}}{\ell!} \frac{d^{\ell}}{d\mu^{\ell}} (e^{-\mu} \mu^{\ell}), \quad \int d\mu \ L_{\ell}(\mu) L_{\ell'}(\mu) e^{-\mu} = \delta_{\ell\ell'},$$

$$H_m(\hat{v}) = (-1)^m e^{\hat{v}^2} \frac{\mathrm{d}^m}{\mathrm{d}\hat{v}^m} e^{-\hat{v}^2}, \frac{1}{\sqrt{\pi}} \int \mathrm{d}\hat{v} H_m(\hat{v}) H_{m'}(\hat{v}) e^{-\hat{v}^2} = 2^m m! \delta_{mm'},$$

$$\mu L_{\ell} = (2\ell+1)L_{\ell} - (\ell+1)L_{\ell+1} - \ell L_{\ell-1}, \quad \frac{\mathrm{d}L_{\ell}}{\mathrm{d}\mu} = \frac{\mathrm{d}L_{\ell-1}}{\mathrm{d}\mu} - L_{\ell-1},$$

$$\hat{v}H_m = \frac{1}{2}H_{m+1} + mH_{m-1}, \quad \frac{\mathrm{d}H_m}{\mathrm{d}\hat{v}} = 2mH_{m-1}.$$

Backup slides (6)

The Laguerre-Hermite transform allows us to express the electron gyrokinetic equation in terms of a series of 'fluid moments':

$$\frac{\mathrm{d}g_{\ell,m}}{\mathrm{d}t} + \frac{v_{\mathrm{th}e}}{\sqrt{2}} \nabla_{\parallel} (\sqrt{m+1} g_{\ell,m+1} + \sqrt{m} g_{\ell,m-1}) \\ - C[g_{\ell,m}] + \omega_{de}[g_{\ell,m}] = (\omega_{*e})_{\ell,m}.$$

We have defined:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} &= \frac{\partial}{\partial t} + \boldsymbol{v}_E \cdot \nabla_{\perp} = \frac{\partial}{\partial t} + \frac{1}{2} \rho_e v_{\mathrm{th}e} \{\varphi, \ldots\},\\ \nabla_{\parallel} &= \boldsymbol{b} \cdot \nabla = \frac{\partial}{\partial z} + \frac{\delta \boldsymbol{B}_{\perp}}{B_0} \cdot \nabla_{\perp} = \frac{\partial}{\partial z} - \rho_e \{\mathcal{A}, \ldots\}, \end{split}$$

which are the time derivative in the frame moving with the $E \times B$ flow, and the derivative along the exact, perturbed magnetic field line respectively.

Backup slides (7)

Electron-electron and electron-ion collisions:

$$\begin{split} C[g_{\ell,m}] &= -\left(\nu_{ee} + \nu_{ei}\right)(m + 2\ell)g_{\ell,m} + \nu_{ee}g_{0,1}\delta_{0,1} \\ &+ \frac{1}{3}(\nu_{ee} + \nu_{ei})\left(\sqrt{2}g_{0,2} + 2g_{1,0}\right)\left(\sqrt{2}\delta_{0,2} + 2\delta_{1,0}\right). \end{split}$$

Magnetic drifts:

$$\omega_{de}[g_{\ell,m}] = \frac{\rho_e v_{\text{the}}}{2L_B} \frac{\partial}{\partial y} \left[\sqrt{(m+1)(m+2)} g_{\ell,m+2} + 2(m+\ell+1) g_{\ell,m} + \sqrt{m(m-1)} g_{\ell,m-2} + (\ell+1) g_{\ell+1,m} + \ell g_{\ell-1,m} \right].$$

Energy injection:

$$\begin{split} (\omega_{*e})_{\ell,m} &= -\frac{\rho_e v_{\text{the}}}{2L_{n_e}} \frac{\partial \varphi}{\partial y} \left[\delta_{0,0} + \eta_e \left(\delta_{1,0} + \frac{1}{\sqrt{2}} \delta_{0,2} \right) \right] \\ &+ \frac{\sqrt{2}\rho_e v_{\text{the}}}{2L_{n_e}} \frac{\partial \mathcal{A}}{\partial y} \left[\delta_{0,1} + \eta_e \left(\delta_{0,1} + \delta_{1,1} + \sqrt{\frac{3}{2}} \delta_{0,3} \right) \right] \\ &+ \frac{v_{\text{the}}}{\sqrt{2}} \left(\frac{2}{v_{\text{the}}} \frac{\mathrm{d}\mathcal{A}}{\mathrm{d}t} + \frac{\partial \varphi}{\partial z} \right) \delta_{0,1} + \frac{\rho_e v_{\text{the}}}{2L_B} \frac{\partial \varphi}{\partial y} \left[\sqrt{2} \delta_{0,2} + \delta_{1,0} + 2\delta_{0,0} \right] \end{split}$$

Backup slides (8)

Density moment $(\ell, m) = (0, 0)$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\delta n_e}{n_e} + \nabla_{\parallel} u_{\parallel e} + \frac{\rho_e v_{\mathrm{the}}}{2L_B}\frac{\partial}{\partial y} \left(\frac{\delta T_{\parallel e}}{T_e} + \frac{\delta T_{\perp} e}{T_e} + 2\frac{\delta n_e}{n_e} - 2\varphi\right) = 0.$$

Parallel velocity moment $(\ell, m) = (0, 1)$:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \frac{u_{\parallel e}}{v_{\mathrm{the}}} &+ \frac{v_{\mathrm{the}}}{2} \nabla_{\parallel} \left(\frac{\delta T_{\parallel e}}{T_{e}} + \frac{\delta n_{e}}{n_{e}} \right) + \frac{\rho_{e} v_{\mathrm{the}}}{2L_{B}} \frac{\partial}{\partial y} \left(4 \frac{u_{\parallel e}}{v_{\mathrm{the}}} + \frac{\delta q_{\parallel e} + \delta q_{\perp e}}{n_{e} v_{\mathrm{the}} T_{e}} \right) \\ &= \frac{\rho_{e} v_{\mathrm{the}}}{2L_{n_{e}}} \frac{\partial \mathcal{A}}{\partial y} (1 + \eta_{e}) + \left(\frac{\partial \mathcal{A}}{\partial t} + \frac{v_{\mathrm{the}}}{2} \nabla_{\parallel} \varphi \right) - \nu_{ei} \frac{u_{\parallel e}}{v_{\mathrm{the}}}. \end{aligned}$$

Backup slides (9)

Parallel temperature moment $(\ell, m) = (0, 2)$:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta T_{\parallel e}}{T_e} + v_{\mathrm{the}} \nabla_{\parallel} \left(\frac{\delta q_{\parallel e}}{n_e v_{\mathrm{the}} T_e} + 2 \frac{u_{\parallel e}}{v_{\mathrm{the}}} \right) + \frac{4}{3} (\nu_{ee} + \nu_{ei}) \frac{\delta T_{\parallel e} - \delta T_{\perp e}}{T_e} \\ + \frac{\rho_e v_{\mathrm{the}}}{2L_B} \frac{\partial}{\partial y} \left(6 \frac{\delta T_{\parallel e}}{T_e} + 2 \frac{\delta n_e}{n_e} - 2\varphi + 2\sqrt{6}g_{0,4} + \sqrt{2}g_{1,2} \right) = -\frac{\rho_e v_{\mathrm{the}}}{2L_{T_e}} \frac{\partial \varphi}{\partial y} \end{aligned}$$

Perpendicular temperature moment $(\ell, m) = (1, 0)$:

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}\frac{\delta T_{\perp e}}{T_e} + v_{\mathrm{th}e}\nabla_{\parallel}\frac{\delta q_{\perp e}}{n_e v_{\mathrm{th}e}T_e} + \frac{2}{3}(\nu_{ee} + \nu_{ei})\frac{\delta T_{\perp e} - \delta T_{\parallel e}}{T_e} \\ &+ \frac{\rho_e v_{\mathrm{th}e}}{2L_B}\frac{\partial}{\partial y}\left(4\frac{\delta T_e}{T_e} + \frac{\delta n_e}{n_e} - \varphi + 2g_{2,0} + \sqrt{2}g_{1,2}\right) = -\frac{\rho_e v_{\mathrm{th}e}}{2L_{T_e}}\frac{\partial \varphi}{\partial y}. \end{split}$$

Backup slides (10)

Parallel heat flux moment $(\ell, m) = (0, 3)$:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta q_{\parallel e}}{n_e v_{\mathrm{the}} T_e} + v_{\mathrm{the}} \nabla_{\parallel} \left(\sqrt{6}g_{0,4} + \frac{3}{2}\frac{\delta T_{\parallel e}}{T_e}\right) + 3(\nu_{ee} + \nu_{ei})\frac{\delta q_{\parallel e}}{n_e v_{\mathrm{the}} T_e} \\ + \frac{\rho_e v_{\mathrm{the}}}{2L_B} \frac{\partial}{\partial y} \left(2\sqrt{15}g_{0,6} + 8\frac{\delta q_{\parallel e}}{n_e v_{\mathrm{the}} T_e} + 6\frac{u_{\parallel e}}{v_{\mathrm{the}}} + \sqrt{3}g_{1,3}\right) = \frac{3\rho_e v_{\mathrm{the}}}{2L_{T_e}}\frac{\partial\mathcal{A}}{\partial y} \end{aligned}$$

•

Perpendicular heat flux moment $(\ell, m) = (1, 1)$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta q_{\perp e}}{n_e v_{\mathrm{the}} T_e} + v_{\mathrm{the}} \nabla_{\parallel} \left(\frac{1}{\sqrt{2}} g_{1,2} + \frac{1}{2} \frac{\delta T_{\perp e}}{T_e} \right) + 3(\nu_{ee} + \nu_{ei}) \frac{\delta q_{\perp e}}{n_e v_{\mathrm{the}} T_e} \\ + \frac{\rho_e v_{\mathrm{the}}}{2L_B} \frac{\partial}{\partial y} \left(\sqrt{3} g_{1,3} + 6 \frac{\delta q_{\perp e}}{n_e v_{\mathrm{the}} T_e} + \frac{u_{\parallel e}}{v_{\mathrm{the}}} + \sqrt{2} g_{2,1} \right) = \frac{\rho_e v_{\mathrm{the}}}{2L_{T_e}} \frac{\partial \mathcal{A}}{\partial y}.$$

Backup slides (11)

(ETG turbulence) In the inertial range, we have the critical balance:

$$t_{\rm nl}^{-1} \sim \rho_e v_{\rm the} k_\perp^2 \varphi \sim \Omega_e^{2/3} \varepsilon_W^{1/3} \bar{\tau}^{1/3} (k_\perp \rho_e)^{4/3} \sim k_\parallel v_{\rm the}$$

At the outer scale, the maximal growth rate is comparable to the streaming rate,

$$k_{\parallel}^{o} v_{\rm the} \sim \gamma_{\rm ETG}^{o} \sim \omega_{*e}^{o} \eta_{e} \quad \Rightarrow \quad k_{\parallel}^{o} L_{T_{e}} \sim k_{y}^{o} \rho_{e} \sim \frac{\Omega_{e}}{\varepsilon_{W}} \left(\frac{\rho_{e}}{L_{T_{e}}}\right)^{3} \cdot$$

The ETG instability is stabilised by magnetic tension at $k_{\perp}d_e \sim 1$, meaning that the outer scale is pinned at $k_y^o d_e \sim 1$. The turbulent rate of energy injection and heat flux are then:

$$\varepsilon_W \sim \frac{\rho_e^2 d_e}{L_{T_e}^3} \Omega_e \quad \Rightarrow \quad \left[(Q_{\text{turb}})^{\text{ETG}} \sim n_e T_e \frac{\rho_e^2 d_e}{L_{T_e}^2} \Omega_e. \right]$$

Backup slides (12)

(Curvature-ETG turbulence) We argue that realistic turbulence set up by the curvature-ETG will sit in kinetic regime, where $\omega \sim k_{\parallel} v_{\rm the}$.

► Assuming that the turbulence exists at scales $k_{\perp}\rho_i \gtrsim 1$, we have (at the outer scale):

$$k_{\parallel}^{o}(L_{T_{e}}L_{B})^{1/2} \sim k_{y}^{o}\rho_{e} \sim \frac{\Omega_{e}}{\varepsilon_{W}} \frac{\rho_{e}^{3}}{(L_{T_{e}}L_{B})^{3/2}}$$

- ▶ Maximum growth rate occurs for $k_{\parallel} = 0$; in a finite system, this is limited by the parallel system size $L_{\parallel} \sim qL_B$.
- ▶ It follows that the turbulent rate of energy injection and heat flux are:

$$\varepsilon_W \sim \frac{\rho_e^3 L_{\parallel}}{L_{T_e}^2 L_B^2} \Omega_e \quad \Rightarrow \quad \left[(Q_{\rm turb})^{\rm cETG} \sim n_e T_e \frac{\rho_e^3 L_{\parallel}}{L_{T_e} L_B^2} \Omega_e. \right]$$

Backup slides (13)

