Low-beta electromagnetic plasma turbulence
driven by electron-temperature gradient

T. G. Adkins®? and A. A. Schekochihin!2

1Rudolf Peierls Centre For Theoretical Physics
Oxford University

2Merton College
Oxford University

PPPL Graduate Summer School 2020

ford &
(Prer = CCFE



Table of Contents

1. Motivation

2. Theoretical Background

3. Waves and Instabilities

4. Free energy and turbulence

5. Summary and future work



Table of Contents

1. Motivation



Motivation

» Understanding (turbulent) heat transport in magnetically
confined plasmas is crucial to the design of successful
tokamak experiments

» Therefore, we need to determine the turbulent state of the
plasma at saturation

> We shall focus on turbulence driven by the
electron-temperature gradient (ETG) instability

> Most theory is done electostatically; that is, under the
assumption that magnetic field lines are not frozen into the
electron velocity, and so electrons are free to stream across
said field lines without deforming them

» Developing picture for the turbulent state in the
electromagnetic regime is a natural and desirable extension
of the typical ETG picture
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Local (slab) approximation
Yy

®B()2

z

Figure 1: A representation of the magnetic geometry adopted. The
domain is located a distance Lp from the axis, and & and y are the
‘radial’ and ‘poloidal’ directions respectively. The equilibrium
magnetic field By is orientated along 2.

1 dBO L_l o _i dns Lil ide

Ll=— = 8% — - .
B By dz '’ ™ ne de = Ts T, dz

2/9



Low-beta ordering

For characteristic frequencies w and wavenumbers k| and k
parallel and perpendicular to the total magnetic field B, we
adopt the ordering

W~ k1 ~ Wds ~ K| Vthe ~ Wxs ~ WKAW ™~ Vee ™~ Vei.
In particular, such an ordering implies both that the electron
beta is small
Zme 8mne T,

< ]-, = )
m; ﬁe Bg

Be'\‘

and that the perturbations are small-amplitude and highly
anisotropic:
ki de c

o = 1, d.= .
kj_ € /867 € LTS << I € Wpe

In general, our system is captured by the fields ¢, A, dofe, (g:)-
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Gyrokinetics

Figure 2: Within magnetic confinement fusion devices, particles
perform gyro-motion around the local magnetic field. Gyrokinetics
averages over this fast timescale, approximating the particles as rings
of charge (diagram from Howes et al. (2006)).
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Electrostatic ETG Limit

We consider the subsidiary ordering

Wae K| vtne w
— KL L
Wie Wie Wse

<1<k de,

under which our equations reduce to:

PeVthe 0 0T,
oL Oy T. '
du”e vthe 0T, iéTe __ PeVthe %
dt o I a T, 2Lr. Oy’

d__
7 2= Vie —2
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Electrostatic ETG Limit

We consider the subsidiary ordering

w kyvn
Wie . H|%he . @

Wie Wie Wie

<1<k de,

under which our equations reduce to:
PeVthe 0 5Te

d
—T o=V —

dt o2Lg Oy T,
du”6 _ vthev 0T i(sTe _ _pevtheai
dt o I a1, 2Lr. Oy’
where
d 0 o 1
T a—i— E-V]= ot +§Pevthe{<,0,---},
0 0B 0
V” —b'V—%—i-BiO-VJ_—a—pe{A,...},

and we have defined the normalised variables ¢ = e¢/T, and
A= AH / peBo.
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Electrostatic ETG Limit
We consider the subsidiary ordering

w kjven w
Cde o MThe o @ 9 <k d.,
Wxe Wie Wie

under which our equations reduce to:

PeUthe 2 0T,

d__
o7 = Ve —2

dt 2L Oy T.’
du”e _ _thhev oTe E‘STe _ _ Pelthe 67(;0
dt o I ar T 2L, Oy’

In the absence of magnetic drifts (L5' — 0) we recover the
familiar slab ETG result:

_\ 1/3
AN AT A
w = sgn(ky) | —1, B + 5y e .
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Electrostatic ETG Limit

We consider the subsidiary ordering

Wae K| vtne w
— KL L
Wie Wie Wse

<1<k de,

under which our equations reduce to:

d ——1 PeVthe O 6T

- — -9

a PV T2 T T
du”e vthe 5T iéTe __ PeVthe %
dt T at T, 2L7, Oy’

In the 2-D limit (kj — 0), we obtain the familiar
curvature-ETG mode

k Vth 2’7_'
w? = —WxeWdeT = _( uPe e)

Lt Lp
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Electrostatic ETG Limit

We consider the subsidiary ordering

wq F ) vthe
Pde o A «
Wie Wxe Wie

<1<k de,

under which our equations reduce to:

d PeVthe O 6T
= —2
q = Vi oLp 9y T,
du”e _ Uthe 5T iéTe _ _ Pelthe 874)0
dt T at T, 2L7, Oy’

The conventional (slab) ETG instability exists as long as &k de

is large, as it requires electrons to flow across field lines.
However, since the curvature-ETG mode arises from the
interchange of magnetic field lines, it will drive instabilities
regardless of the perpendicular scale...
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Electromagnetic KAW Limit
We considering the subsidiary ordering

w, w kyvin
de o © ki d, < SITthe

Wxe Wse Wie

~ 1,

under which our equations reduce to:

peUtheQCSTe
2L Oy T.’

v 0T _ Pe % géTe _ _pevtheaﬁ
T, " Ly oy’ dt T, 2Lr. Oy

d ——1 2 2
ST o=V ViA-2




Electromagnetic KAW Limit

We considering the subsidiary ordering

kyv
wde<<kaJ_de<< cheNL
Wie Wie Wxke
under which our equations reduce to:
d PeVthe O 5T
d>v, v 2
G P=dVIVIA- oLy 9y T,
v 0T _ Pe % géTe _ _pevtheaﬁ
T, " Ly oy’ dt T, 2Lr. Oy

Linearising and Fourier transforming, we find the dispersion
relation _
2T -
k”Uthekld 5 — WxeWdeT .



Electromagnetic KAW Limit
We considering the subsidiary ordering

w, w kjven
de o © ki d, < SITthe
Wie Wie Wxe

under which our equations reduce to:

d__, 2 2 PeVihe O 0T

a —d _9 9

a ¥ ANVIVIAS 2 e T

c o7, pe OA d 0T, PeVthe O
I = En == 9,

T, L 0y dtT. 2Lt dy
These hybrid KAW-curvature-ETG like modes are unstable for

certain values of k:”:
2
k2 < e (Fy .
I 2L, R \ k|

For k| = 0, we simply re-obtain the curvature-ETG mode.




Electromagnetic KAW Limit

We considering the subsidiary ordering

Wde k || Uthe

< ~kide <

Wie We Wxe

~ 1,

under which our equations reduce to:

PeVthe O 5T
2Lp Oy T.

v 0T, _ Pe % géTe o _pevtheaﬁ
VT, " Ly oy’ At T.  2Lg, oy

d
dtT Ly = dV”V.A 2

It thus appears that the curvature-ETG instability persists as a
source of energy injection above the d. scale. How does this
affect our picture of the turbulent state of our plasma?
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4. Free energy and turbulence



Free energy and critical balance

Our system nonlinearly conserves the free energy

2 2

w d3r |71y 5 1n? Ul 15TH€
= [ — d.V A — = -

neTe V| g TldeVL |+2n2+vt2he+4Te2

which is injected through equilibrium gradients and dissipated
by collisions, leading to cascade of energy from large to small
scales.

EkJ_ 4

A

Injection

Inertial
—-7/3
<k

Dissipation

ki

Figure 3: The typical Kolmogorov picture of turbulence.
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Free energy and critical balance

Our system nonlinearly conserves the free energy

71 15 . 10T
TP 14w AP+ =P ” yo

2 Tam T i

W[
neT, \%4

which is injected through equilibrium gradients and dissipated
by collisions, leading to cascade of energy from large to small
scales. Assume:

» C'ritical balance: that the characteristic time for
propagation along the field lines is comparable to the
nonlinear advection rate t;ll at each scale k:ll.

> That the perturbations are roughly isotropic in the
perpendicular plane, so k; ~ k, ~ k.

» That there is a constant flux of energy in the inertial range:

1 dW 712
ned, dt tal

= constant.

Ew ~

+ ...
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Turbulent heat fluxes

We have contributions to the turbulent heat flux arising from
the conventional ETG instability and the curvature-ETG
instability:

2d ng
(Qturb)ETG ~ neTef‘);%:Qe Vs. (Qturb)CETG ~ neTe L;ELII% Qe-

» The transport that results from the curvature-ETG is less
‘stiff” than that resulting from the ETG.

» Role of the parallel temperature perturbation is to
maintain pressure balance along the perturbed field line,
rather than drive parallel electron velocity.

» This means that the ETG only enters into the dispersion
relation through the curvature term.
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Summary and future work

» We considered the turbulent state of a low-beta,
magnetised plasma allowing electromagnetic perturbations
and a variation of the equilibrium magnetic field

» In certain analytical limits, it was shown that the system
supported two primary instabilities: the conventional
electrostatic ETG instability, and KAWSs unstable to the
curvature-ETG instability.

» Below the d. scale, the resultant turbulent heat flux scales
as LEE, while above the d. scale it appears less ‘stiff’,
scaling as L}:.

» Simulations of a reduced version of the full kinetic system
are currently being implemented in order to verify these
analytical estimates.
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Gyrokinetic set-up:

QS¢(T7t)
T.

s

6f8(r>'v7t) = fOS(xa'U)+hS(R87UJ_7'UH7t)a

8 ds <X>Rs ahs
a; <h5 - TSfOs> + )| 02

+ (vas + (v >Rs) Vi (hs + fos) = Clhs],

c . UHAH v -A
UXZEOZXVLX7 X=¢— T

b
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Backup slides (2)
Ordering of lengthscales:

/7_
kJ_p’L ~ Za kj_pe ~ ﬁ67 kj_de ~ 17

k
Ky Ln, ~ kL, ~ kR ~ /B, k% ~ €

Ordering of timescales:

w w
976 ~ 6B67 Qiz ~ €.
Ordering of perturbations of density, pressure and
electromagnetic fields:
one on;  Ope Op;  ed 0B

~ Y6 ~ € Bea
Ne n; De bi Te By

Be-
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Non-adiabatic response of the ions:

d
( + vy - VJ_) gi + Bio {(#)r, — 0,91} + (WE)R, - VLfoi

dt
_ 4 ()R,
=C |:gz + Tz fOz ;
where @)
g, 4 Ri ¢
9i = hz TZ fOz-

Quasineutrality and parallel Ampere’s law:

OMNe

1 Ulle
=7 lp 4 — / @v (gi),, S = d2VIA

Ne Uthe

where we have defined the normalised variables ¢ = e¢/T, and
A= AH / peB().
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The electrons are drift kinetic, since k| pe ~ /B < 1, vis.:

U o)

e

d
<dt + U||VH + Vge - VJ_) Ofe = —Uy - V1 foe —

We choose to expand Jf. in Laguerre-Hermite moments gy ,:

1 Ly(v2 /v2 YH,, .
Jom(r,t) = /d3'v (_l)ﬁ (v /i) Hm (v /vene) 5f..
oo 00 L ,02 U2 H.. (o1 /v .
Ofe(r, vy, v1, 1) = (-1 (VL /Vine) Him (1) /Vine) foe .
£=0 m=0 2mm)!

where

Ly = Laguerre polynomials of order /,

H,, = Hermite polynomials of order m.
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et dt

LZ(:U’) £| d,LL

——(e7Huh), /dM Lo(p) Ly (p)e ™ = b,

s2 d™
Hp(9) = (—1)me” —
() = (-1 —

2 1 N
e_v2’ \T /dﬁHm(ﬁ)Hm/ (6)6_1}2 = 2an!(Smm’;
™

dLe dLg_l
di = - Léfl )
I du

/LL[ = (25 + 1)L( (E + 1)L£+1 ELZ 1,

) 1 dH
VHpy, = 5 m+1 +mHpy, 1, T@m =2mHp_1.
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The Laguerre-Hermite transform allows us to express the
electron gyrokinetic equation in terms of a series of ‘fluid
moments’:

dge Uth
dém + \t/gvn(\/m gem+1 + VM Gem—1)

- C[gﬁ,m] + wde[gf,m] = (W*e)ﬁ,m-

We have defined:

d 0 g 1
at = ot +vg- -V, = ot + ipevthe{()pv }7
0 6B 0
V”—bV—&‘i‘ﬁVl—a—pe{A,},

which are the time derivative in the frame moving with the
FE x B flow, and the derivative along the exact, perturbed
magnetic field line respectively.
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Electron-electron and electron-ion collisions:

C[.gf,m] = (Vee + Vei)(m + 2€)gl,m + Veego,150,1
1
+ g(Vee + Vei) (\/590,2 + 291,0) (\/550,2 + 251,0) .
Magnetic drifts:
PeVthe 0
wuclgem] = G oo [V I E D0+ gtz +20m -+ L+ Vg

o V/m(m =Dtz + (€ 4+ Dgerim + (G-1m)

Energy injection:

PeVthe 890 1 ):|
Wie = — — 1000 +Ne | 1.0 + —=9
( )é,m [ 0,0 T 7] ( 1,0 \/5 0,2

2L,, Oy
3
00,1 + Ne (50,1 + 011+ \/;50,3>

ﬂpevthe %
2L,, Oy
Uthe 2 dA 890 Pelthe 890
+ 00,1
\/§ Vthe dt 6 2L B y

[\f502+510+2600}
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Density moment (¢, m) = (0,0):

d one pevthei <5T||e I oT T e dne . 2@) -0

2
2LB 8y Te * Te

Parallel velocity moment (¢, m) = (0,1):

u 0T, ) U 0qe + 90
d Yje +Uthev”< e ne) +peUthea<4|e+ qlle QJ_6>
dt Vine Ne 2Lp ay Uthe NeVthele

_ Pelthe 8./4 OA  Vgpe Ulle
= 1 e — Ve .
2Ly, Oy gy LT < ot T 2 Vie ) = v Uthe
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Parallel temperature moment (¢, m) = (0, 2):

d 0T 0q)je e\ |, 4 0T}je = 0T e
l v [ —le 4 o 7le = N lle  TAAe
dt T. Vb V) NeVthele * Uthe * S(Vee + ver) T,
pevine 0 ( 0Tje  done PeUthe O
— | 6 2— -2 2v6 2 = — —.
+ 2L, Oy < T. + . ¥ +2V6g0,4 + V2012 2Ly, Oy
Perpendicular temperature moment (¢, m) = (1,0):
d 6T, 8q1e 2 0T e — 6T
dt T, T VeV NeUVthele * 3(1/66 + vei) T,
PeVthe 0 5Te 6”6 PeVthe a(P
Pelthe 9 42 P = Letthe ¥
oLy Dy < 7. T ¥t 920 + V291 2Ly, Oy
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Parallel heat flux moment (¢, m) = (0, 3):

d  Oqje 30T, 0qle

Rl | \VA 3 N dlle

dt nevgneTe + vV Vg0, 2 T, + 3(Vee + vei) NeVineTe

pevthe 6Q||e 3peUthe 0A

2v1 8 = iy

" 2Lg oy < 00+ 8 O V39 3) 2Ls, Oy

Perpendicular heat flux moment (¢, m) = (1,1):

d dqle 1 10T 0q.Le

dt nevtheT FoneV | ggte Ty ) 3 Hve) o

PeVthe 0A

Pevthe 5QJ_6
6 = -
* 2Lp Oy <\fg1 3t NeVthele + Vthe V2 ) 2Lt, Oy
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(ETG turbulence) In the inertial range, we have the critical
balance:

_ 1/3_
t ~ pevinek? @ ~ QPP TY3 (ki pe)V? ~ kyvihe.

At the outer scale, the maximal growth rate is comparable to
the streaming rate,

Q 0 3
kjjvthe ~ VBTG ~ Wiehe = KjjL, ~ kype ~ i <L; )
The ETG instability is stabilised by magnetic tension at
kide ~ 1, meaning that the outer scale is pinned at kyde ~ 1.
The turbulent rate of energy injection and heat flux are then:

2d,
Q = (Qturb)ET ~nel, IOE Qe-

Te Te

- Npede
W
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(Curvature-ETG turbulence) We argue that realistic turbulence
set up by the curvature-ETG will sit in kinetic regime, where
w ~ kH'Uthe-
> Assuming that the turbulence exists at scales k, p; = 1, we
have (at the outer scale):

e pi

k(L1 L 1/2~k08~—7.
H( Te B) yP ew (LTELB)3/2

» Maximum growth rate occurs for kj = 0; in a finite system,
this is limited by the parallel system size L ~ qLp.

» It follows that the turbulent rate of energy injection and
heat flux are:

3
0 = (Q b)CETG ~n.T peLH
L2 L2B e tur e eLTeLzB

Qe.
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