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Motivation

I Understanding (turbulent) heat transport in magnetically
confined plasmas is crucial to the design of successful
tokamak experiments

I Therefore, we need to determine the turbulent state of the
plasma at saturation

I We shall focus on turbulence driven by the
electron-temperature gradient (ETG) instability

I Most theory is done electostatically; that is, under the
assumption that magnetic field lines are not frozen into the
electron velocity, and so electrons are free to stream across
said field lines without deforming them

I Developing picture for the turbulent state in the
electromagnetic regime is a natural and desirable extension
of the typical ETG picture
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Local (slab) approximation

LB

ŷ

x̂

B0ẑ

Figure 1: A representation of the magnetic geometry adopted. The
domain is located a distance LB from the axis, and x̂ and ŷ are the
‘radial’ and ‘poloidal’ directions respectively. The equilibrium
magnetic field B0 is orientated along ẑ.
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Low-beta ordering

For characteristic frequencies ω and wavenumbers k‖ and k⊥
parallel and perpendicular to the total magnetic field B, we
adopt the ordering

ω ∼ k⊥vE ∼ ωds ∼ k‖vthe ∼ ω∗s ∼ ωKAW ∼ νee ∼ νei.

In particular, such an ordering implies both that the electron
beta is small

βe ∼
Zme

mi
� 1, βe =

8πneTe
B2

0

,

and that the perturbations are small-amplitude and highly
anisotropic:

k‖

k⊥
∼ ε
√
βe, ε =

de
LTs
� 1, de =

c

ωpe
.

In general, our system is captured by the fields φ, A‖, δfe, (gi).
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Gyrokinetics

Figure 2: Within magnetic confinement fusion devices, particles
perform gyro-motion around the local magnetic field. Gyrokinetics
averages over this fast timescale, approximating the particles as rings
of charge (diagram from Howes et al. (2006)).
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Electrostatic ETG Limit

We consider the subsidiary ordering

ωde
ω∗e
�

k‖vthe

ω∗e
� ω

ω∗e
� 1� k⊥de,

under which our equations reduce to:

d

dt
τ̄−1ϕ = ∇‖u‖e − 2

ρevthe
2LB

∂

∂y

δTe
Te

,

du‖e

dt
= −

v2the
2
∇‖

δTe
Te

,
d

dt

δTe
Te

= −ρevthe
2LTe

∂ϕ

∂y
,
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δTe
Te
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dt

δTe
Te

= −ρevthe
2LTe

∂ϕ
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where

d

dt
=

∂

∂t
+ vE · ∇⊥ =

∂

∂t
+

1

2
ρevthe{ϕ, ...},

∇‖ = b · ∇ =
∂

∂z
+
δB⊥
B0
· ∇⊥ =

∂

∂z
− ρe{A, ...},

and we have defined the normalised variables ϕ = eφ/Te and
A = A‖/ρeB0.
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In the absence of magnetic drifts (L−1B → 0) we recover the
familiar slab ETG result:

ω = sgn(ky)

(
−1,

1

2
± i
√

3

2

)(
k2‖v

2
the|ω∗e|τ̄

2

)1/3

.
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In the 2-D limit (k‖ → 0), we obtain the familiar
curvature-ETG mode

ω2 = −ω∗eωdeτ̄ = −(kyρevthe)
2τ̄

LTeLB
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Electrostatic ETG Limit

We consider the subsidiary ordering

ωde
ω∗e
�

k‖vthe

ω∗e
� ω

ω∗e
� 1� k⊥de,

under which our equations reduce to:

d

dt
τ̄−1ϕ = ∇‖u‖e − 2

ρevthe
2LB

∂

∂y

δTe
Te

,

du‖e

dt
= −

v2the
2
∇‖

δTe
Te

,
d

dt

δTe
Te

= −ρevthe
2LTe

∂ϕ

∂y
,

The conventional (slab) ETG instability exists as long as k⊥de
is large, as it requires electrons to flow across field lines.
However, since the curvature-ETG mode arises from the
interchange of magnetic field lines, it will drive instabilities
regardless of the perpendicular scale...
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Electromagnetic KAW Limit

We considering the subsidiary ordering

ωde
ω∗e
� ω

ω∗e
∼ k⊥de �

k‖vthe

ω∗e
∼ 1,

under which our equations reduce to:

d

dt
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2LB

∂
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δTe
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δTe
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=
ρe
LTe
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∂y

,
d

dt

δTe
Te

= −ρevthe
2LTe

∂ϕ

∂y
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∂ϕ
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Linearising and Fourier transforming, we find the dispersion
relation

ω2 = k2‖v
2
thek

2
⊥d

2
e

τ̄

2
− ω∗eωdeτ̄ .
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These hybrid KAW-curvature-ETG like modes are unstable for
certain values of k‖:

k2‖ 6
βe

2LTeR

(
ky
k⊥

)2

.

For k‖ = 0, we simply re-obtain the curvature-ETG mode.
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∂y
.

It thus appears that the curvature-ETG instability persists as a
source of energy injection above the de scale. How does this
affect our picture of the turbulent state of our plasma?
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Free energy and critical balance

Our system nonlinearly conserves the free energy

W

neTe
=

∫
d3r

V

[
ϕτ̄−1ϕ

2
+ |de∇⊥A|2 +

1

2

δn2e
n2e

+
u2‖e

v2the
+

1

4

δT 2
‖e

T 2
e

+ . . .

]
,

which is injected through equilibrium gradients and dissipated
by collisions, leading to cascade of energy from large to small
scales.

Ek⊥

k⊥

Injection

Inertial

∝ k−7/3⊥

Dissipation

Figure 3: The typical Kolmogorov picture of turbulence.
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Free energy and critical balance

Our system nonlinearly conserves the free energy

W

neTe
=

∫
d3r

V

[
ϕτ̄−1ϕ

2
+ |de∇⊥A|2 +

1

2

δn2e
n2e

+
u2‖e

v2the
+

1

4

δT 2
‖e

T 2
e

+ . . .

]
,

which is injected through equilibrium gradients and dissipated
by collisions, leading to cascade of energy from large to small
scales. Assume:

I Critical balance: that the characteristic time for
propagation along the field lines is comparable to the
nonlinear advection rate t−1nl at each scale k−1⊥ .

I That the perturbations are roughly isotropic in the
perpendicular plane, so kx ∼ ky ∼ k⊥.

I That there is a constant flux of energy in the inertial range:

εW ∼
1

neTe

dW

dt
∼ τ̄−1ϕ2

tnl
= constant.
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Turbulent heat fluxes

We have contributions to the turbulent heat flux arising from
the conventional ETG instability and the curvature-ETG
instability:

(Qturb)ETG ∼ neTe
ρ2ede
L2
Te

Ωe vs. (Qturb)cETG ∼ neTe
ρ3eL‖

LTeL
2
B

Ωe.

I The transport that results from the curvature-ETG is less
‘stiff’ than that resulting from the ETG.

I Role of the parallel temperature perturbation is to
maintain pressure balance along the perturbed field line,
rather than drive parallel electron velocity.

I This means that the ETG only enters into the dispersion
relation through the curvature term.
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Summary and future work

I We considered the turbulent state of a low-beta,
magnetised plasma allowing electromagnetic perturbations
and a variation of the equilibrium magnetic field

I In certain analytical limits, it was shown that the system
supported two primary instabilities: the conventional
electrostatic ETG instability, and KAWs unstable to the
curvature-ETG instability.

I Below the de scale, the resultant turbulent heat flux scales
as L−2Te , while above the de scale it appears less ‘stiff’,

scaling as L−1Te .

I Simulations of a reduced version of the full kinetic system
are currently being implemented in order to verify these
analytical estimates.
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Backup slides (1)
Gyrokinetic set-up:

δfs(r,v, t) = −qsφ(r, t)

Ts
f0s(x,v) + hs(Rs, v⊥, v‖, t),

∂

∂t

(
hs −

qs 〈χ〉Rs

Ts
f0s

)
+ v‖

∂hs
∂z

+ (vds + 〈vχ〉Rs
) · ∇⊥ (hs + f0s) = C[hs],

vχ =
c

B0
ẑ ×∇⊥χ, χ = φ−

v‖A‖

c
− v⊥ ·A

c

vds =
b

Ωs
×
[
v2‖b ·∇b +

1

2
v2⊥∇ logB

]
.



Backup slides (2)
Ordering of lengthscales:

k⊥ρi ∼
√
τ

Z
, k⊥ρe ∼

√
βe, k⊥de ∼ 1,

k‖Lns ∼ k‖LTs ∼ k‖R ∼
√
βe,

k‖

k⊥
∼ ε
√
βe.

Ordering of timescales:

ω

Ωe
∼ εβe,

ω

Ωi
∼ ε.

Ordering of perturbations of density, pressure and
electromagnetic fields:

δne
ne
∼ δni

ni
∼ δpe

pe
∼ δpi

pi
∼ eφ

Te
∼ ε, δB⊥

B0
∼ ε
√
βe,

δB‖

B0
∼ εβe.



Backup slides (3)
Non-adiabatic response of the ions:(

d

dt
+ vdi · ∇⊥

)
gi +

c

B0

{
〈φ〉Ri

− φ, gi
}

+ 〈vE〉Ri
· ∇⊥f0i

= C

[
gi +

qi 〈φ〉Ri

Ti
f0i

]
,

where

gi = hi −
qi 〈φ〉Ri

Ti
f0i.

Quasineutrality and parallel Ampere’s law:

δne
ne

= −τ̄−1ϕ+
1

ni

∫
d3v 〈gi〉r ,

u‖e

vthe
= d2e∇2

⊥A.

where we have defined the normalised variables ϕ = eφ/Te and
A = A‖/ρeB0.



Backup slides (4)
The electrons are drift kinetic, since k⊥ρe ∼

√
βe � 1, vis.:(

d

dt
+ v‖∇‖ + vde · ∇⊥

)
δfe = −vχ · ∇⊥f0e −

v‖eE‖

Te
+ C[δfe].

We choose to expand δfe in Laguerre-Hermite moments g`,m:

g`,m(r, t) =
1

ne

∫
d3v (−1)`

L`(v
2
⊥/v

2
the)Hm(v‖/vthe)√

2mm!
δfe,

δfe(r, v‖, v
2
⊥, t) =

∞∑
`=0

∞∑
m=0

(−1)`
L`(v

2
⊥/v

2
the)Hm(v‖/vthe)f0e√

2mm!
g`,m,

where

L` = Laguerre polynomials of order `,

Hm = Hermite polynomials of order m.



Backup slides (5)

L`(µ) =
eµ

`!

d`

dµ`
(e−µµ`),

∫
dµ L`(µ)L`′(µ)e−µ = δ``′ ,

Hm(v̂) = (−1)mev̂
2 dm

dv̂m
e−v̂

2
,

1√
π

∫
dv̂Hm(v̂)Hm′(v̂)e−v̂

2
= 2mm!δmm′ ,

µL` = (2`+ 1)L` − (`+ 1)L`+1 − `L`−1,
dL`
dµ

=
dL`−1

dµ
− L`−1,

v̂Hm =
1

2
Hm+1 +mHm−1,

dHm

dv̂
= 2mHm−1.



Backup slides (6)
The Laguerre-Hermite transform allows us to express the
electron gyrokinetic equation in terms of a series of ‘fluid
moments’:

dg`,m
dt

+
vthe√

2
∇‖(
√
m+ 1 g`,m+1 +

√
m g`,m−1)

− C[g`,m] + ωde[g`,m] = (ω∗e)`,m.

We have defined:

d

dt
=

∂

∂t
+ vE · ∇⊥ =

∂

∂t
+

1

2
ρevthe{ϕ, ...},

∇‖ = b · ∇ =
∂

∂z
+
δB⊥
B0
· ∇⊥ =

∂

∂z
− ρe{A, ...},

which are the time derivative in the frame moving with the
E ×B flow, and the derivative along the exact, perturbed
magnetic field line respectively.



Backup slides (7)
Electron-electron and electron-ion collisions:

C[g`,m] =− (νee + νei)(m+ 2`)g`,m + νeeg0,1δ0,1

+
1

3
(νee + νei)

(√
2g0,2 + 2g1,0

)(√
2δ0,2 + 2δ1,0

)
.

Magnetic drifts:

ωde[g`,m] =
ρevthe
2LB

∂

∂y

[√
(m+ 1)(m+ 2)g`,m+2 + 2(m+ `+ 1)g`,m

+
√
m(m− 1)g`,m−2 + (`+ 1)g`+1,m + `g`−1,m

]
.

Energy injection:

(ω∗e)`,m = −ρevthe
2Lne

∂ϕ

∂y

[
δ0,0 + ηe

(
δ1,0 +

1√
2
δ0,2

)]
+

√
2ρevthe
2Lne

∂A
∂y

[
δ0,1 + ηe

(
δ0,1 + δ1,1 +

√
3

2
δ0,3

)]

+
vthe√

2

(
2

vthe

dA
dt

+
∂ϕ

∂z

)
δ0,1 +

ρevthe
2LB

∂ϕ

∂y

[√
2δ0,2 + δ1,0 + 2δ0,0

]



Backup slides (8)
Density moment (`,m) = (0, 0):

d

dt

δne
ne

+∇‖u‖e +
ρevthe
2LB

∂

∂y

(
δT‖e

Te
+
δT⊥e

Te
+ 2

δne
ne
− 2ϕ

)
= 0.

Parallel velocity moment (`,m) = (0, 1):

d

dt

u‖e

vthe
+
vthe

2
∇‖
(
δT‖e

Te
+
δne
ne

)
+
ρevthe
2LB

∂

∂y

(
4
u‖e

vthe
+
δq‖e + δq⊥e

nevtheTe

)
=
ρevthe
2Lne

∂A
∂y

(1 + ηe) +

(
∂A
∂t

+
vthe

2
∇‖ϕ

)
− νei

u‖e

vthe
.



Backup slides (9)
Parallel temperature moment (`,m) = (0, 2):

d

dt

δT‖e

Te
+ vthe∇‖

(
δq‖e

nevtheTe
+ 2

u‖e

vthe

)
+

4

3
(νee + νei)

δT‖e − δT⊥e
Te

+
ρevthe
2LB

∂

∂y

(
6
δT‖e

Te
+ 2

δne
ne
− 2ϕ+ 2

√
6g0,4 +

√
2g1,2

)
= −ρevthe

2LTe

∂ϕ

∂y
.

Perpendicular temperature moment (`,m) = (1, 0):

d

dt

δT⊥e
Te

+ vthe∇‖
δq⊥e

nevtheTe
+

2

3
(νee + νei)

δT⊥e − δT‖e
Te

+
ρevthe
2LB

∂

∂y

(
4
δTe
Te

+
δne
ne
− ϕ+ 2g2,0 +

√
2g1,2

)
= −ρevthe

2LTe

∂ϕ

∂y
.



Backup slides (10)
Parallel heat flux moment (`,m) = (0, 3):

d

dt

δq‖e

nevtheTe
+ vthe∇‖

(√
6g0,4 +

3

2

δT‖e

Te

)
+ 3(νee + νei)

δq‖e

nevtheTe

+
ρevthe
2LB

∂

∂y

(
2
√

15g0,6 + 8
δq‖e

nevtheTe
+ 6

u‖e

vthe
+
√

3g1,3

)
=

3ρevthe
2LTe

∂A
∂y

.

Perpendicular heat flux moment (`,m) = (1, 1):

d

dt

δq⊥e
nevtheTe

+ vthe∇‖
(

1√
2
g1,2 +

1

2

δT⊥e
Te

)
+ 3(νee + νei)

δq⊥e
nevtheTe

+
ρevthe
2LB

∂

∂y

(√
3g1,3 + 6

δq⊥e
nevtheTe

+
u‖e

vthe
+
√

2g2,1

)
=
ρevthe
2LTe

∂A
∂y

.



Backup slides (11)
(ETG turbulence) In the inertial range, we have the critical
balance:

t−1nl ∼ ρevthek
2
⊥ϕ ∼ Ω2/3

e ε
1/3
W τ̄1/3(k⊥ρe)

4/3 ∼ k‖vthe.

At the outer scale, the maximal growth rate is comparable to
the streaming rate,

ko‖vthe ∼ γ
o
ETG ∼ ωo∗eηe ⇒ ko‖LTe ∼ k

o
yρe ∼

Ωe

εW

(
ρe
LTe

)3

.

The ETG instability is stabilised by magnetic tension at
k⊥de ∼ 1, meaning that the outer scale is pinned at koyde ∼ 1.
The turbulent rate of energy injection and heat flux are then:

εW ∼
ρ2ede
L3
Te

Ωe ⇒ (Qturb)ETG ∼ neTe
ρ2ede
L2
Te

Ωe.



Backup slides (12)
(Curvature-ETG turbulence) We argue that realistic turbulence
set up by the curvature-ETG will sit in kinetic regime, where
ω ∼ k‖vthe.
I Assuming that the turbulence exists at scales k⊥ρi & 1, we

have (at the outer scale):

ko‖(LTeLB)1/2 ∼ koyρe ∼
Ωe

εW

ρ3e
(LTeLB)3/2

.

I Maximum growth rate occurs for k‖ = 0; in a finite system,
this is limited by the parallel system size L‖ ∼ qLB.

I It follows that the turbulent rate of energy injection and
heat flux are:

εW ∼
ρ3eL‖

L2
Te
L2
B

Ωe ⇒ (Qturb)cETG ∼ neTe
ρ3eL‖

LTeL
2
B

Ωe.



Backup slides (13)

k⊥

k‖

ρ−1i (ko⊥)cETG d−1e

kc‖

(ko‖)
ETG

(ko‖)
cETG

cE
TG

ca
sc

ad
e

∝ k4/3⊥

Stable KAW’s

ETG modes

(ko‖)
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