Quantifying the "minimum" in adaptive minimum variance analysis of planetary plasma waves

> Alexandra Brosius Lynn Wilson III

PPPL Graduate Summer School 2020

Planetary ≈ Venus → Upstream plasma environment

- 1. Loss of water from Venus. I. Hydrodynamic escape of hydrogen (Kasting and Polllack 1983)
- 2. H+/O+ Escape Rate Ratio in the Venus Magnetotail and its Dependence on the Solar Cycle (Persson et al. 2018)

Planetary ≈ Venus → Upstream plasma environment

Motivation: characterize waves

Method: minimum variance analysis (MVA)

Question: are wave angles sensitive to coplanarity?

Venus Express 2006-2012 MAG instrument (Zhang et al. 2007) 32 samples/second; 42 orbits

Ionization, charge separation & motion → Ionosphere, magnetosphere, bow shock

No changes in time series data → Any wave interval length/position

How to choose int./min variance ratio... → What does "flat" mean?

Disclaimer: not data! (Just sine, cosine)

How to choose int./min variance ratio... \mapsto 347 B₀ directions (most are unique)

Disclaimer: not data! Ellipses from prev. slide

3 analysis cases: L10, L50, L100 → Range of max/int. aspect ratios (1:4)

$$\frac{\lambda_{int}}{\lambda_{min}} \equiv \frac{\lambda_y}{\lambda_x} \ge 10 \qquad \qquad \frac{\lambda_y}{\lambda_x} \ge 50 \qquad \qquad \frac{\lambda_y}{\lambda_x} \ge 100$$

$$\frac{\lambda_{max}}{\lambda_{int}} \equiv \frac{\lambda_z}{\lambda_y} \le 4 \qquad \qquad \frac{\lambda_z}{\lambda_y} \le 4 \qquad \qquad \frac{\lambda_z}{\lambda_y} \le 4$$

$$\downarrow 10 \quad (= \lambda 10) \qquad \qquad \downarrow 50 \qquad \qquad \downarrow 100$$

Sonnerup and Scheivle 1998, Giagkiozis wt al. 2018

3 analysis cases: L10, L50, L100
→ Range of max/int. aspect ratios (1:4)

3 analysis cases: L10, L50, L100 → Range of max/int. aspect ratios (1:4)

(Or switch 10 and 40)

Method overview → Example time series & mean

Method overview → MAG example of 2/42 VEX orbits

1. Conditions, pre-processing

Time series data → Solar wind/foreshock

1. Conditions, pre-processing *mean=3*n;*

Method overview → Test loop

Method overview → Analysis scheme, examples

Method overview → Analysis scheme, examples

L10:
$$\lambda_{y/x} > 10$$
, $\lambda_{z/y} <=4$

descending (worst) $\lambda_{y/x}$

 Interval calculations *Examples;*

L100:
$$\lambda_{y/x} > 100$$
, $\lambda_{z/y} <=4$

• ascending (best)
$$\lambda_{y/x}$$

L50:
$$\lambda_{y/x} > 50$$
, $\lambda_{z/y} <=4$
• ascending (ok) $\lambda_{z/y}$

Y/X

0.45:0.55	0.50-0.60	0.55-0.65	0.60-0.70	0.65-0.75	0.70-0.80	0.75-0.85	0.80-0.90	0.85-0.95	0.90-1.00	0.95-1.05	1.00-1.10	1.05-1.15	1.10-1.20	1.15-1.25	1.20-1.30	1.25-1.35	and so on	4.30-4.40	[Hz]
\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	<u> </u>	<u> </u>	<u> </u>	<u> </u>	~	~	а	4	亡

all: frequency-dependent mean window, frequency-dependent max-min interval length

Method overview → Analysis scheme, examples

Example parameters											
BP [Hz]	Min actual	Min min	Max actual	Max max	Mean factor	N intervals	Case	Batch ID			
4.3-4.4	15	12	24	24	0.4598	51	L10	456			
4.1-4.2	15	12	24	24	0.4819	69	L100	456			
3.95-4.05	15				0.5	83	L50	456			
3.55-5.65			26		0.5556	39	L50	932			
3.5-3.6	18	15	30	30	0.5634	63	L100	932			
3.4-3.5	18	15	30	30	0.5797	51	L10	932			
2.85-2.95		18	36	36	0.6897	78	L50	390			
2.7-2.8	25	18	36	36	0.7273	69	L10	390			
2.15-2.25	27	23	44	45	0.9091	26	L100	390			
1.45-1.55	40	33	55	66	1.333	23	L100	440			
1.4-1.5		35	68	69	1.3793	15	L50	440			
0.55-0.65	98	81	162	162	3.333	12	L10	440			

 Interval calculations *Examples;*

Method overview → Convex hull (CH) interval diagnostics

Method overview → Convex hull (CH) interval diagnostics

Method overview → Convex hull (CH) interval diagnostics

Method overview → Quick look at shocks, histograms

Example orbits → Magnetic field

Example orbit → Wave vector directions

Frequency histograms 1^{st} half \mapsto 0.5-1 Hz to 42-2.5 Hz

Frequency histograms 2^{nd} half \mapsto 2.5-3 Hz to 4-4.4 Hz

All frequencies: L10 $\theta_{\rm kB}$ bias \mapsto Why? Nonlinearity (geometry)

Empirical distribution function (stair steps) → Median and dist. comparisons

Statistics										
f mid [Hz]	z (median)	p (median)	p (distr.)	h (median)	h (distr.)	Case 1	Case 2	Batch ID		
						10				
3.95-4.35						100		456		
	24.51	e-132	e-106			10	100			
						10				
3.4-3.9						100		932		
	26.08	e-150	e-131			10	100			
						10				
1.7-3.35						100		390		
	35.49	e-276	e-215			10	100			
				0	0	10				
0.45-1.65						100		440		
	12.17	e-34	e-30			10	100			

2 key distinctions → 1) non-criteria, 2) more than 1 wave

- 1. See above hodogram
- 2. Combine adjacent hodograms(examples!)

Thank you!

Key references:

Zhang et al. 2007; Sonnerup and Scheivle 1998; Wilson III 2016 monograph; Giagkiozis et al. 2018; Sham et al. 2014; Collinson et al. 2016; Acknowledgements: NASA, PPPL, snallygasters

FAC defined using x= cross(v,B)

FAC defined using x= cross(v,B)

FAC defined using x= cross(v,B)

An aside regarding idealized "cat ear" waves → Change envelope dependence...

An aside regarding wave superposition → Poi photography

