Radial dependence of near-Earth space plasmas (5 to 26 R_E) Student & Presenter: Marissa Hedlund PI: Lynn Kistler Co-I: Chris Mouikis

> Space Science Center, University of New Hampshire: Durham, NH, 03823

NAS

Image source: Science Photo Library

- Dynamics of magnetized spheres
 - Micro to macro scale
 - Trapped particle motion
 - Single particle motion
 - Field-aligned motion
- Magnetospheres and ionospheres
 - The sun, Earth, and other bodies within our solar system
 - Magnetosphere-ionosphere coupling
 - $\,\circ\,$ The aurora and it's relation to oxygen

Oxygen escaping Earth's atmosphere into it's magnetosphere

- Ion transport mechanisms (this is what I study)
- Satellites in the ionosphere and near-Earth space
 - Van Allen Probes (RBSP)
 - "Space weather" implications

Micro to macro sized magnetized spheres

Single particle motion

Example: In uniform magnetic field and absence of electric field, a charged particle moves in a circle. Assume that **B** is along **z** axis and write **x** and **y** velocity terms (v_X , v_V)

Assumptions: $(B = B_z)$ $m\dot{v}_{\mathbf{y}} = -qv_{\mathbf{x}}\mathbf{B}$ $m\dot{v}_x = qv_y B$ (E = O) $\ddot{\boldsymbol{\nu}}_j = -(q\boldsymbol{B}/m)^2 \boldsymbol{\nu}_j = -\omega^2 \boldsymbol{\nu}_j$ Substitute and generalize for **j** = **x**, **y**: $\ddot{x}_j = -(qB/m)^2 x_j = -\omega^2 x_j$

This could be also generalized to:

Charged particle motion in magnetic fields

- Ideal MHD
 - Ignores relativistic effects

PPPL GSS 2020

Lorentz-force law: $\boldsymbol{F}_{\boldsymbol{L}} = \boldsymbol{q}[\boldsymbol{E} + (\boldsymbol{\nu} \times \boldsymbol{B})]$

<u>Momentum change:</u> $m\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}\boldsymbol{t}} = q[\boldsymbol{E} + (\boldsymbol{v} \times \boldsymbol{B})] + \boldsymbol{F}_{\boldsymbol{g}}$

Angular frequency: $\omega = \frac{|q|\vec{B}|}{|q|}$

Trapped particle motion

- Gyromotion: charged particles gyrate around center with circular motion perpendicular to the magnetic field (B)
 - Parallel velocity is constant (v_{\parallel})
- Pitch angle: the angular trajectory a charged particle is deflected at along B (α)
 - 0°/180°: particle motion is *field-aligned* with *B*
 - 90°: particle motion is a corkscrew along *B*
 - For my studies;
 - Parallel flow: $0^{\circ} < \alpha < 30^{\circ} \rightarrow$ field-aligned
 - Perpendicular flow: 80°< α < 100° \rightarrow gyromotion
 - Antiparallel flow: 150°< α < 180° \rightarrow field-aligned

Cyclotron frequency:
$$\boldsymbol{\omega} = \frac{|q|\boldsymbol{B}}{m}$$
 $\tan \boldsymbol{\alpha} = \frac{v_{\perp}}{v_{\parallel}}$

Cyclotron radius:
$$r_c = \frac{v_\perp}{\omega} = \frac{mv_\perp}{|q|B}$$

PPPL GSS 2020

5

Earth's ionosphere

Ionospheric outflow

Magnetospheres

Formation of Earth's magnetosphere:

© 2005 Pearson Education, Inc., publishing as Addison Wesley

Magnetosphere-Ionosphere Coupling

Formation of field-aligned currents in near-Earth space:

Regions of Earth's magnetosphere:

Formation of Aurorae

Magnetic dipolarization substorms

14

Saturn's Aurora

Hubble Space Telescope

ESA/Hubble, NASA, A. Simon (GSFC) &OPAL Team, J. DePasquale (STScI) & L Lamy (Obs. Paris)

lon transport mechanisms

- Ionospheric O⁺ outflow enters the magnetosphere from either the dayside cusp or nightside auroral regions of very near-Earth space
- O⁺ sourced from the nightside aurora has direct access to the plasma sheet and exhibits characteristic temporal energy dispersions
 Often injected into plasma sheet following magnetic dipolarizations

Van Allen Probes (RBSP-A & RBSP-B)

- The 2 spacecraft were used to study the Van Allen radiation belts that encompass our planet
 - Ran out of fuel will deorbit in 2034
 - No one expected them to last longer than 2 years because of the horribly violent environment they lived in
- NASA Goddard, Solar Dynamics Observatory (SDO), and The Johns Hopkins University Applied Physics Lab (APL) operate RBSP instruments
 - Often injected into plasma sheet following magnetic dipolarizations

Van Allen Probe B was shut-off 07/19/2019 and Van Allen Probe A was deactivated 10/18/2019 after operating for 7 years

Magnetosphere Multiscale Mission (MMS)

- MMS consists of 4 identical spacecraft
 - Studies how the Earth and Sun's magnetic fields connect and disconnect
 - Magnetic reconnection events transfer massive amounts of energy and momentum
 - First mission to allow for small-scale, 3D structure of extremely dynamic systems (*microphysics*)
 - Renown for high spatial and temporal resolution instruments

Spacecraft were launched 03/13/2015 and are estimated to remain operational until 2040

3 phase mission to study space weather

Statistical study of MMS & RBSP

Data sets: MMS 2016 & 2017, RBSP 2016-2017 tail seasons

• For each data set:

- **1.** Identify O⁺ dispersions (characteristic of nightside auroral source)
- 2. Record maximum and minimum energies of dispersion
- 3. Record flow direction (uni or bi-directional by pitch angle α)
- 4. Note if there was a dispersionless ion injection observed by LANL geosynchronous satellites
- 5. Identify if injection followed dipolarization by checking for increase in Bz
- Sort through data sets for highest quality events ("Greatest Hits")

Y (GSM)

NH

University of

Sample RBSP Event

08-02-2016

Preliminary Results

Flow Direction of O⁺ Dispersions

Location of O⁺ Dispersions

Preliminary Results

Preliminary Results

	Data set	Total no. events	"Greatest Hits"	% with LANL	% with dipolarizations
General statistics of O ⁺ dispersions	RBSP	181	N/A	49.73% (total)	52.05% (total)
	MMS 2016	261	80	31.25%	81.25%
	MMS 2017	57	14	50%	64.29%

verages of O ⁺ ispersions	Data set	R _E	Dipole L	Max E (<i>keV</i>)	Min E (<i>eV</i>)
	RBSP	5.4	5.921	1.22	9.02
	MMS 2016	9.9	11.38	15.0	127
	MMS 2017	14.0	14.57	16.1	129

Conclusions from initial statistics:

 The number of dispersed O⁺ injections into near-Earth plasma sheet decrease with radial distance

 Most events are occurring at <15R_E

Locationally, we see a dusk-ward skewing of O⁺ energy dispersions

 The minimum/maximum energy of O⁺ dispersions agree with a model of a nightside aurora source
 Model considers convection combined with parallel motion

Hedlund/Kistler/Mouikis

Personnel & Acknowledgements

- Marissa is an analytical chemist by training
 - Started studying space physics in 2018 as a Boulder Solar Alliance REU Intern at HAO (NCAR)
- NASA: Living With a Star (LWS) Focus Science Team (FST) #3- Ion Transport
 - FST #3: Magnetosphere-Ionosphere Processes Responsible for Rapid Geomagnetic Changes

Bill Lotko

Thank you for listening! Any questions?

Perceived Impact

- Determine solar wind parameters, magnetospheric conditions, and ionospheric properties that affect the rate of change of the geomagnetic field in the coupled solar wind – magnetosphere – ionosphere system
- Establish a predictive capability for geomagnetically induced current (GIC) events
 - Can disrupt telecommunications and electrical grid systems
 - Hazardous for humans aboard ISS

ISS

Sample RBSP O⁺ Dispersion

08-02-2016

New Hampshire

05-16-2016

NH

05-16-2016

