Radial dependence of near-Earth space plasmas (5 to 26 \(R_E\))

Student & Presenter: Marissa Hedlund
PI: Lynn Kistler
Co-I: Chris Mouikis

Space Science Center, University of New Hampshire: Durham, NH, 03823

Image source: Science Photo Library
Dynamics of magnetized spheres
 - Micro to macro scale
 - Trapped particle motion
 - Single particle motion
 - Field-aligned motion

Magnetospheres and ionospheres
 - The sun, Earth, and other bodies within our solar system
 - Magnetosphere-ionosphere coupling
 - The aurora and its relation to oxygen

Oxygen escaping Earth’s atmosphere into its magnetosphere
 - Ion transport mechanisms (this is what I study)
 - Satellites in the ionosphere and near-Earth space
 - Van Allen Probes (RBSP)
 - “Space weather” implications
Micro to macro sized magnetized spheres
Single particle motion

Example: In uniform magnetic field and absence of electric field, a charged particle moves in a circle. Assume that \mathbf{B} is along z axis and write x and y velocity terms (v_x, v_y)

\[
\mathbf{F}_L = q[\mathbf{E} + (\mathbf{v} \times \mathbf{B})]
\]

Assumptions: $(B = B_z)$

\[
\begin{align*}
 m\dot{v}_x &= qv_y B \\
 m\dot{v}_y &= -qv_x B
\end{align*}
\]

Momentum change:

\[
 m\frac{\mathbf{v}}{dt} = q[\mathbf{E} + (\mathbf{v} \times \mathbf{B})] + \mathbf{F}_g
\]

Angular frequency:

\[
 \omega = \frac{|q|B}{m}
\]

This could be also generalized to:

\[
\begin{align*}
 \dot{x}_j &= -(qB/m)^2 x_j = -\omega^2 x_j \\
 \dot{y}_j &= -(qB/m)^2 y_j = -\omega^2 y_j
\end{align*}
\]

- Charged particle motion in magnetic fields
- Ideal MHD
 - Ignores relativistic effects
Trapped particle motion

- **Gyromotion**: charged particles gyrate around center with circular motion perpendicular to the magnetic field (\mathbf{B})
 - Parallel velocity is constant (v_\parallel)

- **Pitch angle**: the angular trajectory a charged particle is deflected at along \mathbf{B} (α)
 - 0°/180°: particle motion is field-aligned with \mathbf{B}
 - 90°: particle motion is a corkscrew along \mathbf{B}
 - For my studies:
 - **Parallel flow**: $0^\circ < \alpha < 30^\circ$ → field-aligned
 - **Perpendicular flow**: $80^\circ < \alpha < 100^\circ$ → gyromotion
 - **Antiparallel flow**: $150^\circ < \alpha < 180^\circ$ → field-aligned

\[
\tan \alpha = \frac{v_\perp}{v_\parallel}
\]

\[
\omega = \frac{|q|B}{m}
\]

\[
r_c = \frac{v_\perp}{\omega} = \frac{mv_\perp}{|q|B}
\]
Formation of Mars’ ionosphere:

Formation of Titan’s ionosphere:

Formation of Ganymede’s ionosphere:
Earth’s ionosphere

Ionospheric outflow
Magnetospheres

Formation of Earth’s magnetosphere:

Outer planets’ magnetospheres:
Heliosphere

Termination Shock

Bow Wave

Heliopause

Sun
Jovian magnetosphere
Magnetosphere-Ionosphere Coupling

Formation of field-aligned currents in near-Earth space:

Regions of Earth’s magnetosphere:
Occur in high-latitude region called auroral zone

Northern lights: aurora borealis

Southern lights: aurora australis

Optical emissions are caused when the solar wind is deflected towards Earth's magnetic poles and down field-lines to ionospheric altitudes (~80 to 640 km) where it then collides and ionizes atmospheric particles.

Higher solar activity \rightarrow more high energy collisions \rightarrow more lights

Formation of Aurorae
Magnetic dipolarization substorms

1. Magnetic reconnection

2. Magnetic field dipolarization

Just after substorm onset

Aurora

Plasmoid
Saturn’s Aurora

H_3^+ Faint X-rays

Hubble Space Telescope
Ion transport mechanisms

- Ionospheric O^+ outflow enters the magnetosphere from either the dayside cusp or nightside auroral regions of very near-Earth space.

- O^+ sourced from the nightside aurora has direct access to the plasma sheet and exhibits characteristic temporal energy dispersions.
 - Often injected into plasma sheet following magnetic dipolarizations.
Van Allen Probes (RBSP-A & RBSP-B)

- The 2 spacecraft were used to study the Van Allen radiation belts that encompass our planet
 - Ran out of fuel - will deorbit in 2034
 - No one expected them to last longer than 2 years because of the horribly violent environment they lived in

- NASA Goddard, Solar Dynamics Observatory (SDO), and The Johns Hopkins University Applied Physics Lab (APL) operate RBSP instruments
 - Often injected into plasma sheet following magnetic dipolarizations

Van Allen Probe B was shut-off 07/19/2019 and Van Allen Probe A was deactivated 10/18/2019 after operating for 7 years
Magnetosphere Multiscale Mission (MMS)

- MMS consists of 4 identical spacecraft
 - Studies how the Earth and Sun’s magnetic fields connect and disconnect
 - Magnetic reconnection events transfer massive amounts of energy and momentum
 - First mission to allow for small-scale, 3D structure of extremely dynamic systems (*microphysics*)
 - Renown for high spatial and temporal resolution instruments

- Spacecraft were launched 03/13/2015 and are estimated to remain operational until 2040
 - 3 phase mission to study *space weather*
Statistical study of MMS & RBSP

- For each data set:
 1. Identify O^+ dispersions (characteristic of nightside auroral source)
 2. Record maximum and minimum energies of dispersion
 3. Record flow direction (uni or bi-directional by pitch angle α)
 4. Note if there was a dispersionless ion injection observed by LANL geosynchronous satellites
 5. Identify if injection followed dipolarization by checking for increase in B_z

- Sort through data sets for highest quality events (“Greatest Hits”)

Phase 1b & 2

RBSP

- 05/27/2016 to 04/30/2017
 - Apogee 6 R_E

MMS 2016

- 03/01/2016 to 09/25/2016
 - Apogee 13 R_E

MMS 2017

- 04/01/2017 to 10/26/2017
 - Apogee 26 R_E
Sample MMS Event

Dipolarizations

Ion injections

Instrument off

08-12-2016
Sample RBSP Event

Dipolarization

Ion injections
Preliminary Results

Flow Direction of O⁺ Dispersions

- Northern hemisphere
- Southern hemisphere

Location of O⁺ Dispersions

- Dipole L
- Dawn
- Noon
- Midnight
- Dusk

- MLT
Preliminary Results

Min E of O⁺ vs. Radial Distance

Max E of O⁺ vs. Radial Distance
Preliminary Results

<table>
<thead>
<tr>
<th>Data set</th>
<th>Total no. events</th>
<th>“Greatest Hits”</th>
<th>% with LANL</th>
<th>% with dipolarizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBSP</td>
<td>181</td>
<td>N/A</td>
<td>49.73% (total)</td>
<td>52.05% (total)</td>
</tr>
<tr>
<td>MMS 2016</td>
<td>261</td>
<td>80</td>
<td>31.25%</td>
<td>81.25%</td>
</tr>
<tr>
<td>MMS 2017</td>
<td>57</td>
<td>14</td>
<td>50%</td>
<td>64.29%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data set</th>
<th>R_E</th>
<th>Dipole L</th>
<th>Max E (keV)</th>
<th>Min E (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBSP</td>
<td>5.4</td>
<td>5.921</td>
<td>1.22</td>
<td>9.02</td>
</tr>
<tr>
<td>MMS 2016</td>
<td>9.9</td>
<td>11.38</td>
<td>15.0</td>
<td>127</td>
</tr>
<tr>
<td>MMS 2017</td>
<td>14.0</td>
<td>14.57</td>
<td>16.1</td>
<td>129</td>
</tr>
</tbody>
</table>
Conclusions from initial statistics:

- The number of dispersed O⁺ injections into near-Earth plasma sheet decrease with radial distance
 - Most events are occurring at <15Rₑ

- Locationally, we see a dusk-ward skewing of O⁺ energy dispersions

- The minimum/maximum energy of O⁺ dispersions agree with a model of a nightside aurora source
 - Model considers convection combined with parallel motion
GJ 1151

Illustration: Olena Shmahalo
Personnel & Acknowledgements

• Marissa is an analytical chemist by training
 • Started studying space physics in 2018 as a Boulder Solar Alliance REU Intern at HAO (NCAR)
• NASA: Living With a Star (LWS) Focus Science Team (FST) #3- Ion Transport
 • FST #3: Magnetosphere-Ionosphere Processes Responsible for Rapid Geomagnetic Changes

Yours truly

Chris Mouikis
Kevin Pham
Lynn Kistler
Bill Lotko
Thank you for listening!
Any questions?
Extras
Perceived Impact

• Determine solar wind parameters, magnetospheric conditions, and ionospheric properties that affect the rate of change of the geomagnetic field in the coupled solar wind – magnetosphere – ionosphere system

• Establish a predictive capability for geomagnetically induced current (GIC) events
 o Can disrupt telecommunications and electrical grid systems
 o Hazardous for humans aboard ISS
Sample RBSP O+ Dispersion

Dipolarization

Ion injections

08-02-2016
Sample MMS Multi-Dispersed Event

No dipolarization

No ion injection at times of dispersions at geosynchronous
Dipolarizations

No ion injection
Sample MMS O$^+$ Dispersion

H$^+$

O$^+$

Dipolarizations

Ion injections

Instrument off

08-12-2016