

Kilohertz Laser Wakefield Acceleration

Yasmeen Musthafa Franklin Dollar University of California, Irvine PPPL GSS 2020

Outline

- Applications of particle accelerators
- Motivation for plasma-based particle accelerators
- The physics of laser wakefield and the bubble regime
- Achieving the bubble regime with a kHz, mJ laser system
- Future work at UCI

Glossary

 Peak amplitude of the normalized vector potential of the laser:

$$a_0 = 0.855 \lambda [\mu m] \sqrt{I_0 [10^{18} W/cm^2]}$$

• Plasma frequency:
$$\omega_p = \sqrt{rac{4\pi n_e e^2}{m_e}}$$
 $\lambda_p = rac{2\pi c}{\omega_p}$

• Underdense plasmas have:

$$\omega_p < \omega_0$$

Applications of Particle Accelerators

High Energy Physics

The Large Hadron Collider at CERN

Medicine

Cancer Therapy

Light sources

X-Ray Imaging

Manufacturing

Electron Beam Lithography

Motivation for Plasma Acceleration

- Traditional linear particle accelerators use RF acceleration to accelerate particles to relativistic energies
- Acceleration gradients are limited by dielectric material breakdown to roughly 100 MV/m

Image by SLAC National Accelerator Laboratory

Motivation for Plasma Acceleration

 Laser wakefield accelerators present a compact method of obtaining high energy electrons and bright light sources

 The charge separation in the plasma can create acceleration gradients on the scale of 100 GV/m, compared to 100 MV/m for traditional accelerators

Image by Felicie Albert

Laser Wakefield Acceleration (LWFA)

- In laser wakefield acceleration, electrons can be accelerated to relativistic energies by surfing on a plasma wave driven by a laser pulse
- LWFA can also be used as a x-ray source due to the betatron radiation produced by electrons oscillating in the wake of the pulse

Image by Felicie Albert

The Physics of the Bubble Regime

 In the bubble regime, the laser pulse expels nearly all the electrons to form a bubble around a fixed ion core

- The charge separation creates a strong electric field inside the bubble
- Important parameters include plasma electron density, laser spot size, pulse duration, and a₀.

Bubble regime

The Physics of the Bubble Regime

- Electrons are accelerated in the bubble directly behind the laser pulse
- Electrons at the back with v_e > v_{phase} can undergo self-injection into the bubble

Electron Self-Injection

Limiting Factors for LWFA

• Dephasing¹ L

$$L_d=rac{4\sqrt{a_0}}{3c}\Big(rac{\omega_0^2}{\omega_p^3}\Big)\,.$$

• Depletion¹ $L_{dp} = au_0 c \Big(rac{\omega_0}{\omega_p} \Big)^2$

Diffraction
$$z_r=rac{\pi w_0^2}{\lambda}$$

Achieving LWFA with a kHz laser system

- kHz Ti:Saph laser system at UCI
 - \circ λ = 800 nm, T = 35 fs
 - \circ 0.2 TW, a₀ = 2.16
- High repetition rate: better statistics, changing the wavelength
- Currently working on improving our electron diagnostic capabilities

0.05 - 4.0 0.04 - 3.5 30.025 0.03 - 3.0 0.02 (Position (m) - 2.5 E 20.05 0.01 - 2.0 0.00 -15 - 10.075 -0.01-10 -0.02 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 X Position (m)

Electron Spectrometer Simulation

Future Work at UCI

- Self-injection of electrons is extremely sensitive to laser parameters when the pulse power is low
- Shock-front injection: sharp change in density profile can slow down the back of the bubble and can prompt electron self-injection
- Reliable and controllable method of injecting electrons

Future Work at UCI

- By using pulse compression to compress our 35 fs pulse to 7 fs, we can increase our intensity
- Next steps: Replicate previous experiment at UCI with more sensitive electron diagnostics
- Implement shock-front injection and/or few cycle LWFA

Questions?