Basics of Plasma Spectroscopy

2019 Graduate Summer School at PPPL Presented by Brian Kraus

August 14, 2019

NSTX-U EUV spectra (Weller 2016, RSI 87, 11E324)

- 1. Plasmas emit light—here, 0.1 Å $<\lambda \lesssim 1~\mu{\rm m}$
 - $\bullet\,$ Line emission
 - $\bullet\,$ Continuum emission
- 2. Spectral features influenced by plasma properties
 - Brightness/intensity
 - Line ratios
 - Line positions and widths
- 3. Spectrometer design considers wavelength of interest and geometry
- 4. Complicated spectra + sophisticated analysis = wealth of plasma information (with Dr. Shaun Haskey)

- 1. Plasmas emit light—here, 0.1 Å $<\lambda \lesssim 1~\mu{\rm m}$
 - $\bullet\,$ Line emission
 - $\bullet\,$ Continuum emission
- 2. Spectral features influenced by plasma properties
 - Brightness/intensity
 - Line ratios
 - Line positions and widths
- 3. Spectrometer design considers wavelength of interest and geometry
- 4. Complicated spectra + sophisticated analysis = wealth of plasma information (with Dr. Shaun Haskey)

Most plasma radiation is a consequence of electron motion

Classified by electron state before and after emission:

• Bound-bound

• Free-bound

• Free-free

Atoms (and ions) with **bound** electrons emit line radiation

- Bound electrons transition between quantum states
- Transitions must conserve:
 - Energy
 - Total angular momentum $J = |\boldsymbol{L} + \boldsymbol{S}|$
- "Selection rules" establish how often transitions occur
 - $\Delta J \in \{-1, 0, 1\}$: electric dipole transitions
 - Less frequent: magnetic dipole, electric quadropole

Free electrons "brake," recombine \rightarrow continuum radiation

Bremsstrahlung

- Colliding electrons and ions behave like a time-varying dipole
- Photon energy $\hbar \omega = \Delta E$ of electron
- Intensity depends on electron distribution function f(E)

Free-bound

- Electrons captured according to time-dependent perturbation theory
- Photon energy $\hbar\omega = E_{\text{electron}} + E_{\text{bound state}}$
- Spectrum depends on f(E) and bound state energies

Es the feature of the

Creative Commons

- 1. Plasmas emit light—here, 0.1 Å $<\lambda\lesssim 1~\mu{\rm m}$
 - Line emission
 - Continuum emission
- 2. Spectral features influenced by plasma properties
 - Brightness/intensity
 - Line ratios
 - Line positions and widths
- 3. Spectrometer design considers wavelength of interest and geometry
- 4. Complicated spectra + sophisticated analysis = wealth of plasma information (with Dr. Shaun Haskey)

Line **intensity** proportional to radiative rate For a transition $n_u \to n_l + \hbar \omega$, emissivity $\varepsilon \left[\frac{\text{photons}}{\text{cm}^3 \text{ s}} \right] = n_u A_r$

 $A_r \left[s^{-1} \right] =$ Radiative rate

As in $\partial_t n_u = -A_r n_u$

- Depends drastically on
 - Nuclear charge
 - Number of bound electrons
- Neutral H Balmer series:
 - 656 nm, $A_r^{-1} = 45$ ns
- $\operatorname{Ti}^{20+} n = 2 \to 1$:

• 2.61 Å,
$$A_r^{-1} = 4.2$$
 fs

Bohr model of H (Creative Commons)

 Ti^{20+} spectrum from PLT (Bitter 1984, PRA 29, 661)

Line **intensity** proportional to excited population density For a transition $n_u \to n_l + \hbar \omega$, emissivity $\varepsilon \left[\frac{\text{photons}}{\text{cm}^3 \text{ s}}\right] = n_u A_r$ photon $n_u \, [\mathrm{cm}^{-3}] = \mathrm{Density}$ of upper state X^* Depends on many atomic kinetic processes: • Collisional excitation $X + e^- \rightarrow X^* + e^-$

• Collisional recombination

$$X^+ + e^- \to X^*$$

Photoexcitation

$$X + \hbar \omega \to X^*$$

Upper state might be **deexcited** without emitting a photon:

NASA

excited state

• Auger effect

ground state

• Collisional deexcitation

How bright is a line? Varies with **atomic** and **plasma** physics

(more frequent transitions \rightarrow more photons)

Atomic physics

- What are the properties of different quantum states?
- Solve Schrödinger equation for atomic wavefunction
- Eigenvalues \rightarrow energies \rightarrow wavelengths

$$i\hbar \frac{\partial}{\partial t} \left| \Psi(\boldsymbol{r},t) \right\rangle = \hat{H} \left| \Psi(\boldsymbol{r},t) \right\rangle$$

- LS- and JJ-coupling approximate transition rates
- Calculated with Flexible Atomic Code, Cowan's Atomic Structure code...

Bethe and Salpeter, Quantum Mechanics of One- and Two-Electron Atoms

How bright is a line? Varies with **atomic** and **plasma** physics

Plasma physics, or collisional-radiative (CR) modeling

- Based on plasma parameters like n_i , n_e and T_e , evaluate:
 - Each ion's charge state distribution
 - Cross sections at electron energies across f(E)
 - Potential depression, or continuum lowering
- To find these values, must solve high-dimensional rate equation:

$$\frac{dn_i}{dt} = \sum_{j \neq i} R_{ji} n_j - \left(\sum_{j \neq i} R_{ij}\right) n_i, \text{ or}$$

$$\frac{dn}{dt} = RN \qquad n = [n_1, n_2, ..., n_s] \qquad R = \{R_{ij}\}, \quad i, j \in [1, s]$$

• where R_{ij} are based on atomic codes!

dn

In low-density $(\nu_{\text{coll}} \ll A_r)$, use simplified **coronal model**

- No collisional deexcitation or three-body recombination
- Ionization distribution from balance of collisional ionization and radiative recombination:

 $e^- + X^{n+} \to 2e^- + X^{(n+1)+}; \qquad e^- + X^{(n+1)+} \to X^{n+} + \hbar \omega$

• Line emission balances collisional excitation and **spontaneous** emission only:

$$e^- + X \to e^- + X^*; \qquad X^* \to X + \hbar\omega$$

Named for conditions in solar corona:

$$n_e \sim 10^9 \text{ cm}^{-3} \implies \nu_{ei} \sim 60 \text{ s}^{-1}$$

vs. decay of Fe^{13+} ("coronium") lines,

 $A_r \sim 10^7 - 10^{11} \text{ s}^{-1}$

If the full CR problem seems intractable, you may have a point: Assume a single one-electron ion with nuclear charge Z

$$E_n = Z^2 \left(1 - \frac{1}{n^2} \right) \times 13.6057 \text{ eV}$$

Each Rydberg level n has many degenerate states with multiplicities g_n

$$g_n = 2n^2$$

If a plasma in **local thermodynamic equilibrum** has a finite temperature T, each energy level is populated with Boltzmann statistics

$$X_n = g_n \exp\left(-\frac{E_n}{T}\right)$$

But this system **diverges** at high n:

$$\lim_{n \to \infty} X_n \quad \sim \quad \lim_{n \to \infty} n^2 \times \exp\left[\frac{(13.6 \text{ eV}) \times Z^2}{T}\right] = \infty$$

S. B. Hansen, Ch. 2 in Modern Methods in Collisional-Radiative Modeling of Plasmas (2016)

Codes solve this problem by sacrificing **completeness** or **detail**

- Reduce completeness by ignoring some permutations of N electrons in all n-shell orbitals
 - Define state space that is reliably accurate and relevant to plasma parameters, or
 - Allow dynamic state space to evolve as calculation proceeds
- Reduce detail by averaging transitions that are nearby in energy
 - Relativistic term based: 1^1S_0 , 2^1S_0 , 2^1P_0 , $2^3P_{0,1,2}$, ...
 - Configurations: $1s^2$, 1s2s, 1s2p
 - Superconfigurations: $(1)^2$, $(1)^1(2)^1$, $(2)^2$
- This difficult task is attempted by many collisional-radiative codes: FLYCHK, SCRAM, ATOMIC...
 - S. B. Hansen, Ch. 2 in Modern Methods in Collisional-Radiative Modeling of Plasmas (2016)

Collisional-radiative calculations enable plasma diagnosis

Multiple charge states of Cu (Chen 2009, PoP 16, 062701)

- Intensity \rightarrow density of a given population
 - Relative line strength approximates relative densities of upper states
 - Absolutely calibrated signals $(I = \frac{\text{photons}}{\text{keV s sr}})$ can be compared directly to codes
- Line ratios \rightarrow density or temperature $\frac{I_a}{I_b} = \frac{\int_a I(E)dE}{\int_b I(E)dE} = \text{ function of } n_e, T_e$
 - Change $n_e \rightarrow$ change electron-ion collision frequency vs. A_r
 - Change $T_e \rightarrow$ change charge state distribution \rightarrow change line ratios

Model results including fast electron excitation

Sasaki 1995, National Institute for Fusion Science 346

Broadening mechanisms fill **line widths** with information

Lorentzian, width γ

• Natural line width from Heisenberg uncertainty

 $\Delta E \ \Delta t \ge \hbar/2$

$$A_r^{-1} = 2.2 \text{ fs} \rightarrow \Delta E \ge 0.15 \text{ eV}$$

- Stark broadening from time-varying electric fields
 - Collisions effectively alter A_r
 - Very dense plasmas widen natural broadening

Gaussian / Doppler, width σ

• Plasma flow \rightarrow Doppler shift

$$\Delta \omega = \omega \left(1 + \frac{v}{c} \right)$$

- Thermal broadening: Doppler shift from all E in f(E)
- Instrumental broadening: spectrometers introduce error

Convolve all broadening: Gaussian * Lorentzian = Voigt

Creative Commons

In practice, separating all contributions to line widths requires high-resolution spectrometers and careful planning Stark or pressure broadening measures n_e via net electric fields

- Stark effect: E shifts lines
- Stark **broadening**: Microfield perturbations distort lines
- In high density plasmas like NIF, Stark broadening begins at $n_e \gtrsim 10^{24}$ cm⁻³
- In astrophysical plasmas: Inglis-Teller effect

 $\log n_e = 22.0 - 7.0 \log n_{\max}$

• High-*n* lines "broadened" into continuum

Temperature changes in a stellar flare (Zarro 1985, Astronomy and Astrophysics 148, 240)

$$n_{\rm max} = 16 \implies n_e \approx 3.7 \times 10^{13} \ {\rm cm}^{-3}$$

One enormous problem: plasmas are not homogeneous

- General spectra are line-integrated along varied n and T
- The emergent intensity is the solution of a radiative transfer equation

$$\frac{dI(\omega)}{d\ell} = -\kappa(\omega)I(\omega) + \varepsilon(\omega),$$

where $\kappa = \text{opacity } [\text{m}^{-1}]$ and $\varepsilon = \text{volumetric emissivity}$

•
$$\kappa^{-1} =$$
photon mean-free-path

Limb darkening in stars:

- Only see a distance $1/\kappa$
- For stars, $\kappa L \gg 1 \rightarrow$ **optically thick**
- Stellar edge emission indicates colder plasma

- 1. Plasmas emit light—here, 0.1 Å $<\lambda\lesssim$ 1 $\mu{\rm m}$
 - Line emission
 - Continuum emission
- 2. Spectral features influenced by plasma properties
 - Brightness/intensity
 - Line ratios
 - Line positions and widths
- 3. Spectrometer design considers wavelength of interest and geometry
- 4. Complicated spectra + sophisticated analysis = wealth of plasma information (with Dr. Shaun Haskey)

Wavelength of interest defines relevant diffraction gratings

General law of diffraction: $n\lambda = d\sin\theta$

- Visible light, $d\approx\lambda\approx500~\mathrm{nm}$
 - Ridges can be ruled with diamond tool, or
 - Produced with photolithography like other nanomaterials
- UV or EUV, $d\approx$ 10–100 nm
 - Photolithography or multi-layered mirrors
- X-rays, $d\approx$ 0.1–100 Å
 - Low energy: organic crystals, quasicrystals
 - Higher energy: "perfect" crystals (quartz, Ge, Si...)

Geometric factors define spectral resolution, focusing

Generalized flat grating: no focusing

Spherical "mirror" for dispersive imaging

• Best resolution on Rowland circle

Pablant 2012, RSI 83, 083506

Cylindrical focusing for point- or line-sources

Beiersdorfer 1990, RSI 61, 2338

- 1. Plasmas emit light—here, 0.1 Å < $\lambda \lesssim 1~\mu{\rm m}$
 - Line emission
 - Continuum emission
- 2. Spectral features influenced by plasma properties
 - Brightness/intensity
 - Line ratios
 - Line positions and widths
- 3. Spectrometer design considers wavelength of interest and geometry
- 4. Complicated spectra + sophisticated analysis = wealth of plasma information (with Dr. Shaun Haskey)