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Outline of material
• Plasma experiments are hard

• Case study: measuring voltage in DARHT-1

• System response or transfer functions

• Unifying diagnostics and cross-calibration of instruments

• Summary
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Do you really need to do all this work?
• Much of this talk is about achieving precision to ~1%.  Why?!

• Is a complicated analysis/model warranted if a simple one 
describes the data?

• Distinguishing between theories sometimes demands 
accuracy and precision

• Theory and experiment should challenge each other
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There are very few* perfect plasma 
diagnostics
• Almost never directly measure the quantity of 

interest:
– Density: cannot “weigh” plasma or count particles
– Temperature: single number describes distribution of 

energies
– Potential: particle distribution responds to materials

• Complementary techniques reduce overall 
uncertainties by making different assumptions

*Probably none
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How do you define “fast” or 
“high-speed”?
• 1s? 1ms? 1us? 1ns? 1ps?

• Often depends on the field or community 
and phenomena
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Plasma experiments span many orders of 
magnitude in time
• Magnetic fusion wall 

evolution: 1-2 years

• High-Z, ~1eV plasma 
expansion: ~1us

• X-ray interactions 
with matter: ~10 fs S. Hau-Riege, High-Intensity X-Rays – Interaction 

with Matter, Wiley-VCH, 2001.
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Dual-Axis Radiograph Hydrodynamic 
Test (DARHT)

• Uses intense, relativistic 
electron beams for flash x-ray 
radiography

• Flash x-ray experiments 
achieve spatial resolution with 
short pulses

– Resolution~1mm
– Velocity~10km/s
– tpulse~100ns

• X-ray dose ~ IxV2.8 and small 
spot requires stable beam

C. Ekdahl, “Contemporary electron accelerators for flash 
radiograph”, LA-UR-13-23845.
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Assume you have wrapped it in foil and 
loaded up on ferrites…
• Electromagnetic interference (EMI) is often 

associated with transient, high-power experiments

• Ground loops, shielding and other aspects of good 
experimental hygiene are real concerns

• Even if you eliminate such signals, what can 
happen in high-speed experiments?
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Magnetic spectrometer separates 
particles by energy (velocity)
• Charged particles deflected 

in magnetic field

• E-beam bremsstrahlung 
lights up scintillator 
– Recorded with streak 

camera for time resolution
– Can also expose x-ray film 

for permanent records

• Calibrated at low energy 
with heavy, negative ions

T.J. Burris-Mog, et al., Rev. Sci. Instrum. 89 (2018) 073303.
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E-dot sensors are simple capacitive 
pickup probes
• Voltage divider 

circuit

• Sensitive to dV/dt

• Analog or digital 
integration gives V(t)

T. Huiskamp, et al., IEEE Sensors Journal 16 (2016) 3792.
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Which diagnostic is right?
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Which diagnostic is right?
vxB Scintillator Lens

1D fiber bundle
Streak camera

CCD

Capacitive divider
Coax-cable

AttenuatorDigitizer
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• System response or transfer functions
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Transfer functions dictate transformation 
of inputs to outputs
• System response models 

link processes together

• Series connected 
systems convolve signals

• System identification is 
the process of 
determining the transfer 
function

System Component

Input Output

Time Domain
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Lossy- (real world) transmission lines 
add frequency-dependent losses

• Ideal transmission lines feature 
purely reactive elements

• Lossy-lines include series 
resistance and parallel 
conductance

• General solution has real and 
imaginary components
– Attenuation coeff. (real)
– Phase shift coeff. (imag.)

Q. Shi, Trans. Sys. 
Signals & Dev. V7 

(2012) 311.
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Cable design can be used to derive 
lossy-transmission line parameters

• This is an old problem…
– Schelkunoff of Bell Labs 

wrote up solution in 1934
– Q. Shi is a recent usage 

(2012)

• Model solves EM field inside 
cables including skin effect

• R, L, G, C values determined 
from solution of inner and 
outer conductors

Inner conductor
impedance

Cable 
resistance/inductance

per unit length
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Aside: sometimes you run out of 
numbers
• Many computer programs 

will complain if you try to 
calculate exp(+400)

• Bessel functions can be 
simplified for large 
arguments

• Be aware of this type of 
problem and check for
– Simplifications
– Accuracy of simplifications



Slide 19

UNCLASSIFIED

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Example cable used 
to check theory

• “Ultra-low loss microwave 
cable” used for first 
comparison

• Cable geometry in, lossy
cable parameters out

• Inverse Fourier Transform of 
cable model yields impulse 
response function
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Realistic cable changes 
the character of the 
signal
• Consider trapezoidal pulse with 

three models:
– RC integrators, pseudo-ideal cable, 
– vs. lossy cable 

• Long tail of lossy-cable is key 
feature

• Signal droop vs. growth can 
drastically courses of action!
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Literature shows 
common methods to 
characterize cables

• Zhou used HV pulser as 
excitation (30 MHz, IEEE/PES 
Trans. Distr. 2006)

• Chengxiao used sampling o-
scope (100ns rise, ACM Int. 
Conf. Robot. Contr. Autom. 2017)

• Weber utilized time and freq. 
domain techniques (M.Sc. 
Thesis, Fed. Univ. of Technol. 
Curitiba, Brazil 2018)

Zhou, IEEE/PES 
Trans. Distr. 2006

Weber, Fed. Univ. of 
Technol. M.Sc. 

Thesis, 2018
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Analysis process 
tested on lossy-cable

• Data-sheet geometry 
used to create analytical 
cable

• DG 645 + Lecroy 8108A 
used for excitation and 
measurement

• Analytical model used to 
clamp transfer function
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Lossy-cable model 
indicated in raw 
measurements
• Step response indicates long-

period response

• Impulse response gives frequency 
response up to 500MHz, but 
significant noise

• Quick initial response with long tail 
indicative of loss-cable model
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Working in Fourier space simplifies 
system identification process
• Fourier (or Laplace) space 

converts convolution integral 
to multiplication

• Division of input and output 
signals yields transfer 
function

• Ideal transfer function is 
Dirac delta (i.e. constant 
response at all frequencies)
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In the real world, noise ruins many 
“simple” deconvolution processes
• In a noise-free world, 

Fourier-space operations 
work fine

• With noise, inverse 
transform often diminishes 
to zero while noise 
remains constant (white)

No noise!

Oh No!
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Three sources of 
information used to 
develop transfer fxn
• Theory indicates unipolar function 

with “ideal cable” limit

• Impulse response yields early time 
information

• Square pulse yields late-time 
information

Theory

“Impulse” 
excitation

“Square” 
excitation

Σ

Synthesized Impulse 
Response
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Presence of noise 
obvious in simple 
inversion attempts
• Short pulse with theory 

envelope results in early time

• Square pulse model eliminates 
late oscillations

• Tanh weighting function 
transitions between two 
models
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Synthesized impulse response reproduces 
(most of) the measured outputs
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Mathematics for deconvolution relatively 
straightforward with this xfer function
• E-dot signal up-sampled to include high-frequency 

components

• Deconvolution performed in frequency domain

• IFFT result is smoothed with moving Gaussian 
average
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Deconvolution recovers most of the 
signal from the spectrometer
• Signals again 

normalized to 1.0 for 
comparison

• Xfer function only 
derived from 
“calibration” shots

• Synthesis is “kludgy”, 
but it’s “good enough”
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Outline of material
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• System response or transfer functions

• Unifying diagnostics and cross-calibration of instruments

• Summary
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Cross-calibration or independent 
calibrations?
• In an ideal world: independent calibrations 

yield identical results

• Don’t always have necessary equipment, 
time, or forethought to do this

• Instead, can choose to cross-calibration the 
diagnostics
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Caveat Emptor: linear least-squares 
carries assumptions about the data
• Previous calibrations 

used Vmax and Emax

• Least-squares assumes 
data normally distributed 
(and one known 
perfectly)

• Is it true? (can you tell 
already?)
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With a single-point model: data are NOT 
normally distributed!

• Data at flattop are limited to 
maximum value
– Normal distributions extend 

smoothly out
– Most likely value does not coincide 

with the max

• Beta distribution can give fixed 
range distribution
– Can be sampled by Markov-Chain 

Monte-Carlo algorithms
– Alpha and beta parameters 

determined by mean, mode, and 
maximum of data sets
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Calibration with beta model 
yields reasonable results

• Single calibration constant found
– Intercept set to zero
– Spectrometer data follows Beta 

distribution
– Observations normally distributed 

with variance equal to observed

• Result with seven data points at 
right (1.5% variation in 95% 
Confidence Interval)
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Using all data points, 
find smaller uncertainty
• Larger number of observations 

(~3400 vs. 7)
– Normally distributed variables 

assumed
– Compare CDFs of data and 

Gaussian

• Result with seven shots yields 
improved precision (~0.86% 
variation in 95% Confidence 
Interval)
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Results give good 
agreement with 
spectrometer

• E-dot signal now consistent with 
spectrometer to within 
uncertainty (of both
instruments)

• Can, in principle, use E-dot 
instead of time-intensive 
spectrometer
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Which calibration process is correct?
• What do you think?  Beta model or total data set?

• More computational horsepower was needed for the full data 
set, but resulting confidence interval is tighter.  Do you believe 
it?

• Assumed distributions are present in both analyses.  Were 
either correct?

• In the end, stating your assumptions, displaying the results, 
and drawing reasonable conclusions are what peers review
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Words of wisdom:

• “All models are wrong, but some are 
useful.” –George Box
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Some suggested readings
• M. Bertero and P. Boccacci, Introduction to Inverse Problems in 

Imaging, IoP publishing, 1998. (overview of issues and strategies 
with ill-posed problems)

• D. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, Oxford 
Univ. Press, 2006. (includes great discussion of least squares)

• A. Gelman, et al., Bayesian Data Analysis, Chapman and Hall/CRC 
Press, 2013. (more theoretical basis for Bayesian analysis methods)

• N.C. Barford, Experimental Measurements: Precision, Error and 
Truth, Wiley, 1985. (traditional, “frequentist” approach, very practical)
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More suggested readings for your 
specific diagnostic method:

“Why waste 2 hours in the library when you 
can spend 6 months recreating someone 

else’s result?”
Anonymous
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Summary
• Diagnostics are hard, even ones that haven’t touched a 

plasma yet!

• Injector voltage on DARHT-1 is a case study in keeping track 
of the entire diagnostic chain
– System response functions were the key to recovering precision 

in the diagnostic

• Cross-calibration methods and models compared, you are 
not only modeling the experiment, you are also modeling 
the data!
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