Structure of Supersonic Flows Impinged on by Thin Blades for Laser Plasma Accelerators

Liona Fan-Chiang University of California, Berkeley Lawrence Berkeley National Laboratory August 13, 2019 PPPL GSS

Work supported by DOE-HEP, NSF, Varian Medical Systems

Outline

→ Laser Wakefield Accelerators

Next generation accelerators

Controlled Electron Injection

Previous experiments

Simulations

Experimental verification of simulations

Accelerators are everywhere

Image credits : Car, engine, wheels: 2007 Opel Astra GTC Hybrid concept by <u>Studio Parsons</u> for <u>Adam Opel AG</u> | Dashboard: <u>Adam Opel AG</u> | Car interior: <u>Adam Opel AG</u> | Suspension: <u>2CarPros.com</u>

ACCELERATOR TECHNOLOGY & ATA F

Accelerators have advanced very far

Ernest O. Lawrence 1931 4.5 in diameter cyclotron 1.8kV volts to accelerate hydrogen ions up to energies of 80keV.

CERN - 6.5 TeV

Accelerators need a new technology

- Particle accelerators are approaching limits:
 - o Space limited: LHC 27 km circumference
 - o Fundamental limit: dielectric breakdown

• LPA systems promise a solution

- o Smaller, more accessible, powerful
- o RF cavities ~ 100 MV/m vs LPA~ 100 GV/m

*Tigner, M., Phys. Today, 2001 *Faure et al., Nature, 2004; Geddes et al., Nature, 2004; Mangles et al., Nature, 2004³

High-intensity lasers can be used to generate a plasma wake for electron bunch acceleration

- Laser-Plasma Accelerator (LPA)
 - o First proposed in 1979 by Dawson of UCLA^{*}
 - o Principle of operation:
 - Ultrashort laser pulse \rightarrow electron plasma wave \rightarrow accelerating E-field

*Tajima, T. & J.M. Dawson, *PRL*, 1979, ⁺Benedetti, C., *44th Conf. Plasma Phys.* – EPS, 2017

High-intensity lasers can be used to generate a plasma wake for electron bunch acceleration

1: W.P. Leemans, Phys. Plasmas 1998, 2: C. Geddes et al., Nature 2004. 3: W.P. Leemans et al., PRL 2014, 4: S. Steinke et al., Nature 2016

ACCELERATOR TECHNOLOGY & ATA I

Energy record by LPAs is 8 GeV electron beams

Research highlight – 8 GeV electron beams¹

- In 20 cm accelerating structure
- Using 0.85 PW and novel capillary

ACCELERATOR TECHNOLOGY & ATA

BELLA Laser bay and scalable accelerator

ACCELERATOR TECHNOLOGY & ATA

BELLA Laser - table top(s) accelerator

10 GeV equivalent to conventional accelerator at least **5 football fields** long

LPAs already have near term applications

Several Applications

Medical*

Security

ACCELERATOR TECHNOLOGY & ATA

Outline

Laser Wakefield Accelerators

Next generation accelerators

→ Controlled Electron Injection

Previous experiments

Simulations

Experimental verification

Control is required for reliable acceleration

Previous experiments shaped gas for quasi-monoenergetic beams

Gas profile can be shaped to control electron injection

Simulated gas profile

K. K. Swanson et al., Phys. Rev. Accel. Beams 20, 051301 H.-E. Tsai et al., AIP Conference Proceedings 1812, 040005 (2017); doi: 10.1063/1.4975852

ACCELERATOR TECHNOLOGY & ATA

Paradox: Phase images suggested flow upstream

Slide excerpted from presentation by Hann Shin Mao Jan 5, 2018

Previous experiments showing control of tunable monoenergetic electron beams by injecting along a shock induced density downramp used line-of-sight gas jet diagnostic.

K. K. Swanson et al., Phys. Rev. Accel. Beams 20, 051301 H.-E. Tsai et al., AIP Conference Proceedings 1812, 040005 (2017); doi: 10.1063/1.4975852

Hypothesized that characteristic flow was changing

Bow shock would attach to blade. Hypothesized that blow shock becomes inaccessible. Only coalescence shock remains.

Used Planar laser-induced fluorescence to image asymmetric plume

Planar Laser-Induced Fluorescence (PLIF)

Commonly used in aerospace applications

Epstein, A. H. 1974 Fluorescent gaseous tracers for three dimensional flow visualization. MIT Gas Turbine Lab Rep. 117

ACCELERATOR TECHNOLOGY & ATAP

Translating laser sheet provides 3D density profiles

Experimental results show PLIF reveals sharp features in the flow

ACCELERATOR TECHNOLOGY & ATA

19

Measurements show jets with different characteristic flow properties

Simulations had shown jet would be deflected

Simulations show that the entire jet, not just the shock next to the blade, is shifted, suggesting that an entirely new jet is formed.

21

Three different background pressures

22

Summary and Next Steps

Summary

- Laser plasma accelerators are next generation accelerators
- PLIF diagnostic imaged low density and asymmetric gas jets with unprecedented resolution
- Fluid dynamical insights were gained to improve injection methods

Next Steps

- Conduct parametric study of accelerator variables, timing, pressure, blade distance to optimize for beam production
- Compare results with previous and ongoing electron acceleration
 experiments

ACKNOWLEDGEMENTS This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No.DE-AC02-05CH11231, NSF and the Varian Medical Systems/LBNL Strategic Partnership

